Skip to main content
Log in

Green Synthesis of Starch Nanoparticles (SNPs) by Esterification with Rosin Acid Catalyzed by Maghnite-H+ (Algerian Montmorillonite) with Enhanced Antioxidant Activity

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This research aims to prepare potato starch nanoparticles (SNPs) by hydrochloric acid hydrolysis. The esterification reaction of starch nanoparticles with rosin acid is catalyzed by Maghnite-H+ as green catalyst, a non-toxic proton exchanged montmorillonite (sheet silicate clay). The influence of synthesis conditions, including reaction temperature, reaction time, and the amount of catalyst, are assessed using a response surface method relying on a central composite design with three factors and three levels. FTIR spectroscopy analysis elucidates the esterification of SNPs with rosin acid, with the appearance of a new intense peak C=O ester at 1726 cm−1. Scanning electron microscopy observations reveal some atomic/molecules disorder after esterification. X-ray diffraction analysis indicates the presence of the amorphous structure, with a significant decline of the crystallinity upon esterification of SNPs. Thermogravimetric analysis manifests that the thermal stability of esterified SNPs is lower compared to native starch and SNPs. The antioxidant characteristics of SNPs before and after esterification investigated through 1,1-diphenyl- 2-picryl hydrazyl radical scavenging tests demonstrate a dose-dependent increase in the antioxidant activity that is comparable to standard vitamin C (ascorbic acid).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hulwani, A.; Zain, M.: Biodegradation behaviour of thermoplastic starch: the roles of carboxylic biodegradation behaviour of thermoplastic starch: the roles of carboxylic acids on cassava starch. J. Polym. Environ. (2018). https://doi.org/10.1007/s10924-017-0978-5

    Article  Google Scholar 

  2. Odian, G.: Principles of Polymerization. Wiley, Hoboken (2004)

    Book  Google Scholar 

  3. Zhu, F.: Encapsulation and delivery of food ingredients using starch based systems. Food Chem. (2017). https://doi.org/10.1016/j.foodchem.2017.02.101

    Article  Google Scholar 

  4. Bule, A.: Starch granules: structure and biosynthesis. Int. J. Biol. Macromol 23, 85–112 (1998)

    Article  Google Scholar 

  5. Eerlingen, R.C.; Delcour, J.A.: Formation, analysis, structure and properties of type III enzyme resistant starch. J. Cereal Sci. 22, 129–138 (1995)

    Article  Google Scholar 

  6. Masina, N., et al.: A review of the chemical modification techniques of starch. Carbohydr. Polym. (2016). https://doi.org/10.1016/j.carbpol.2016.09.094

    Article  Google Scholar 

  7. Topping, D.L.; Clifton, P.M.: Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81(3), 1031–1064 (2018)

    Article  Google Scholar 

  8. Pe, S.: The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch-Stärke 62, 389–420 (2010). https://doi.org/10.1002/star.201000013

    Article  Google Scholar 

  9. Hoover, R.: Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr. Polym. 45, 253–267 (2001)

    Article  Google Scholar 

  10. Bras, J.; Dufresne, A.: Starch nanoparticles: a review. Biomacromol 11, 1139–1153 (2010)

    Article  Google Scholar 

  11. Xie, F.; Pollet, E.; Halley, P.J.; Avérous, L.: Progress in polymer science. Prog. Polym. Sci. 38(10–11), 1590–1628 (2013). https://doi.org/10.1016/j.progpolymsci.2013.05.002

    Article  Google Scholar 

  12. Bel Haaj, S.; Magnin, A.; Pétrier, C.; Boufi, S.: Starch nanoparticles formation via high power ultrasonication. Carbohydr. Polym. 92(2), 1625–1632 (2013). https://doi.org/10.1016/j.carbpol.2012.11.022

    Article  Google Scholar 

  13. Kim, H.; Park, S.S.; Lim, S.: Preparation, characterization and utilization of starch nanoparticles. Colloids Surf. B Biointerfaces (2014). https://doi.org/10.1016/j.colsurfb.2014.11.011

    Article  Google Scholar 

  14. Campelo, P.H.; Sant’Ana, A.S.; Pedrosa Silva Clerici, M.T.: Starch nanoparticles: production methods, structure, and properties for food applications. Curr. Opin. Food Sci. 33(1), 136–140 (2020). https://doi.org/10.1016/j.cofs.2020.04.007

    Article  Google Scholar 

  15. Avella, M.; De Vlieger, J.J.; Emanuela, M.; Fischer, S.; Vacca, P.; Grazia, M.: Food chemistry biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem. 93, 467–474 (2005). https://doi.org/10.1016/j.foodchem.2004.10.024

    Article  Google Scholar 

  16. Jiang, S.; Liu, C.; Wang, X.; Xiong, L.; Sun, Q.: Physicochemical properties of starch nanocomposite films enhanced by self-assembled potato starch nanoparticles. LWT Food Sci. Technol. 69, 251–257 (2016). https://doi.org/10.1016/j.lwt.2016.01.053

    Article  Google Scholar 

  17. Rodrigues, A.; Emeje, M.: Recent applications of starch derivatives in nanodrug delivery. Carbohydr. Polym. 87(2), 987–994 (2012). https://doi.org/10.1016/j.carbpol.2011.09.044

    Article  Google Scholar 

  18. Fan, Y.; Picchioni, F.: Modification of starch: a review on the application of ‘green’ solvents and controlled functionalization. Carbohydr. Polym. 241, 116350 (2020). https://doi.org/10.1016/j.carbpol.2020.116350

    Article  Google Scholar 

  19. Chen, Q., et al.: Recent progress in chemical modification of starch and its applications. RSC Adv. 5(83), 67459–67474 (2015). https://doi.org/10.1039/c5ra10849g

    Article  Google Scholar 

  20. Ashogbon, A.O.; Akintayo, E.T.: Recent trend in the physical and chemical modification of starches from different botanical sources: a review. Starch-Stärke 66, 41–57 (2014). https://doi.org/10.1002/star.201300106

    Article  Google Scholar 

  21. Alcázar-alay, S.C.; Angela, M.; Meireles, A.: Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Technol. 35(2), 215–236 (2015)

    Article  Google Scholar 

  22. Din, Z.; Xiong, H.; Fei, P.: Physical and chemical modification of starches: a review. Crit. Rev. Food Sci. Nutr. 57(12), 2691–2705 (2015). https://doi.org/10.1080/10408398.2015.1087379

    Article  Google Scholar 

  23. Byrne, F.P., et al.: Tools and techniques for solvent selection: green solvent selection guides. Sustain. Chem. Process. 4, 1–24 (2016). https://doi.org/10.1186/s40508-016-0051-z

    Article  Google Scholar 

  24. Syahariza, Z.A.; Li, E.; Hasjim, J.: Extraction and dissolution of starch from rice and sorghum grains for accurate structural analysis. Carbohydr. Polym. 82(1), 14–20 (2010). https://doi.org/10.1016/j.carbpol.2010.04.014

    Article  Google Scholar 

  25. Liu, X.; Zhang, R.; Zhu, J.; Jiang, Y.: Synthesis and properties of full bio-based thermosetting resins from rosin acid and soybean oil: the role of rosin acid derivatives. Green Chem. (2013). https://doi.org/10.1039/c3gc00095h

    Article  Google Scholar 

  26. Wilbon, P.A.; Chu, F.; Tang, C.: Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol. Rapid Commun. 34(1), 8–37 (2013)

    Article  Google Scholar 

  27. Division, P.M.; Centre, M.S.: Rosin: a renewable resource for polymers and polymer chemicals. Prog. Polym. Sci. 14, 297–338 (1989)

    Article  Google Scholar 

  28. Zaoui, A.; Mahendra, V.; Mitchell, G.; Cherifi, Z.; Harrane, A.: Design, synthesis and thermo-chemical properties of rosin vinyl imidazolium based compounds as potential advanced biocompatible materials. Waste Biomass Valorization (2019). https://doi.org/10.1007/s12649-019-00691-0

    Article  Google Scholar 

  29. Kherroub, D.E.; Belbachir, M.; Lamouri, S.; Chikh, K.: Cationic ring opening polymerization of octamethylcyclotetrasiloxane using a cost-effective solid acid catalyst (maghnite-H+). Iran. J. Sci. Technol. Trans. A Sci. 43(1), 75–83 (2019). https://doi.org/10.1007/s40995-017-0269-y

    Article  Google Scholar 

  30. Yahiaoui, A.; Belbachir, M.; Hachemaoui, A.; De Chimie, L.; De Chimie, D.: An acid exchanged montmorillonite clay-catalyzed synthesis of polyepichlorhydrin. Int. J. Mol. Sci. 4, 548–561 (2003)

    Article  Google Scholar 

  31. Sinha Ray, S.; Okamoto, M.: Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog. Polym. Sci. 28(11), 1539–1641 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Article  Google Scholar 

  32. Harrane, A.; Belaouedj, M.A.; Meghabar, R.; Belbachir, M.: Bulk polycondensation of lactic acid by Maghnite-H+ a non-toxic catalyst. J. Polym. Res. 19(2), 1–5 (2012). https://doi.org/10.1007/s10965-011-9785-1

    Article  Google Scholar 

  33. Peng, X.; Yang, G.; Shi, Y.; Zhou, Y.; Zhang, M.; Li, S.: Box-Behnken design based statistical modeling for the extraction and physicochemical properties of pectin from sunflower heads and the comparison with commercial low-methoxyl pectin. Sci. Rep. 10(1), 1–10 (2020). https://doi.org/10.1038/s41598-020-60339-1

    Article  Google Scholar 

  34. Abd, G.; Mahmoud, E.; Ryhan, S.: Nitrogen, amino acids, and carbon as control factors of riboflavin production by Novosphingobium panipatense-SR3 (MT002778). Curr. Microbiol. 78(4), 1577–1589 (2021). https://doi.org/10.1007/s00284-021-02376-1

    Article  Google Scholar 

  35. Arun, V.V.; Saharan, N.; Ramasubramanian, V.; Rani, A.M.B.; Salin, K.R.: Multi-response optimization of Artemia hatching process using split-split-plot design based response surface methodology. Sci. Rep. (2017). https://doi.org/10.1038/srep40394

    Article  Google Scholar 

  36. Solomon, D.; Kiflie, Z.; Van Hulle, S.: Using Box-Behnken experimental design to optimize the degradation of Basic Blue 41 dye by Fenton reaction. Int. J. Ind. Chem. (2020). https://doi.org/10.1007/s40090-020-00201-5

    Article  Google Scholar 

  37. Gülcin, I.: Antioxidant activity of food constituents: an overview. Arch. Toxicol. 86(3), 345–391 (2012). https://doi.org/10.1007/s00204-011-0774-2

    Article  Google Scholar 

  38. Dai, J.; Mumper, R.J.: Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15, 7313–7352 (2010). https://doi.org/10.3390/molecules15107313

    Article  Google Scholar 

  39. Draoua, Z.; Harrane, A.; Belbachir, M.: Amphiphilic biodegradable poly(ε-caprolactone)-poly (ethylene glycol)–poly(ε-caprolactone) triblock copolymer synthesis by maghnite-H+ as a green catalyst. J. Macromol. Sci. A Pure Appl. Chem. 52(2), 130–137 (2015). https://doi.org/10.1080/10601325.2015.980763

    Article  Google Scholar 

  40. Putaux, J.; Molina-boisseau, S.; Momaur, T.; Dufresne, A.: Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromol 4, 1198–1202 (2003)

    Article  Google Scholar 

  41. Lin, R.; Li, H.; Long, H.; Su, J.; Huang, W.: Synthesis of rosin acid starch catalyzed by lipase. Biomed. Res. Int. (2014). https://doi.org/10.1155/2014/647068

    Article  Google Scholar 

  42. Almeida, M.; Erthal, R.; Padua, E.; Silveira, L.; Am, L.: response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76, 965–977 (2008). https://doi.org/10.1016/j.talanta.2008.05.019

    Article  Google Scholar 

  43. Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R.: A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 89(3), 217–233 (2011). https://doi.org/10.1016/j.fbp.2010.04.008

    Article  Google Scholar 

  44. Nasir, N.M.; Abdulmalek, E.; Zainuddin, N.: Preparation and optimization of water-soluble cationic sago starch with a high degree of substitution using response surface methodology. Polymers (Basel) 12(11), 1–13 (2020). https://doi.org/10.3390/polym12112614

    Article  Google Scholar 

  45. Ahmad, A., et al.: Box-Behnken response surface design of polysaccharide extraction from rhododendron arboreum and the evaluation of its antioxidant potential. Molecules 25(17), 3835 (2020). https://doi.org/10.3390/molecules25173835

    Article  Google Scholar 

  46. Qin, Y.; Liu, C.; Jiang, S.; Xiong, L.; Sun, Q.: Characterization of starch nanoparticles prepared by nanoprecipitation: influence of amylose content and starch type. Ind. Crop. Prod. 87, 182–190 (2016). https://doi.org/10.1016/j.indcrop.2016.04.038

    Article  Google Scholar 

  47. Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S.: Starch retrogradation: a comprehensive review. Rev. Food Sci. Food Saf. 14, 568–585 (2015). https://doi.org/10.1111/1541-4337.12143

    Article  Google Scholar 

  48. Xin, J.; Wang, Y.; Liu, T.; Lin, K.; Chang, L.; Xia, C.: Biosysthesis of corn starch palmitate by lipase novozym. Int. J. Mol. Sci. 13(6), 7226–7236 (2012). https://doi.org/10.3390/ijms13067226

    Article  Google Scholar 

  49. Pozo, C.; Rodríguez-llamazares, S.; Bouza, R.; Barral, L.; Castaño, J.; Müller, N.: Study of the structural order of native starch granules using combined FTIR and XRD analysis study of the structural order of native starch granules using combined FTIR and XRD analysis. J. Polym. Res. 25, 1–8 (2018). https://doi.org/10.1007/s10965-018-1651-y

    Article  Google Scholar 

  50. Winarti, C.; Surono, I.S.; Uswah, M.: Effect of acid and hydrolysis duration on the characteristics of arrowroot and taro starch nanoparticles. IOP Conf. Ser. Earth Environ. Sci. 309(1), 012039 (2019). https://doi.org/10.1088/1755-1315/309/1/012039

    Article  Google Scholar 

  51. Miskeen, S.; Hong, J.S.; Choi, H.; Kim, J.: Fabrication of citric acid-modified starch nanoparticles to improve their thermal stability and hydrophobicity. Carbohydr. Polym. 253, 117242 (2020). https://doi.org/10.1016/j.carbpol.2020.117242

    Article  Google Scholar 

  52. Cheetham, N.W.H.; Tao, L.: Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr. Polym. 36, 277–284 (1998)

    Article  Google Scholar 

  53. Ahmed, I.; Jabeen, M.; Geelani, H.; Ahmad, F.; Saba, I.; Muzaffar, S.: Effect of gamma irradiation on physicochemical properties of Indian Horse Chestnut (Aesculus indica Colebr.) starch. Food Hydrocoll. 35, 253–263 (2014). https://doi.org/10.1016/j.foodhyd.2013.06.002

    Article  Google Scholar 

  54. Zhang, K.; Zhao, D.; Huang, Q.; Huang, J.; Wen, Q.: Physicochemical, structural properties and in vitro digestibility of A- and B-type granules isolated from green wheat and mature wheat starch. Starch-Stärke (2021). https://doi.org/10.1002/star.202100065

    Article  Google Scholar 

  55. Bertoft, E.: Understanding starch structure: recent progress. Agronomy 7, 56 (2017). https://doi.org/10.3390/agronomy7030056

    Article  Google Scholar 

  56. Spinozzi, F.; Ferrero, C.; Perez, S.: The architecture of starch blocklets follows phyllotaxic rules. Sci. Rep. 10(1), 1–16 (2020). https://doi.org/10.1038/s41598-020-72218-w

    Article  Google Scholar 

  57. Lamanna, M.; Morales, N.J.; Lis, N.; Goyanes, S.: Development and characterization of starch nanoparticles by gamma radiation: potential application as starch matrix filler. Carbohydr. Polym. 97(1), 90–97 (2013). https://doi.org/10.1016/j.carbpol.2013.04.081

    Article  Google Scholar 

  58. S. S. Nanoparticles. An investigation of antioxidant and cytotoxic properties of green. no. August 2017 (2015)

  59. Huang, D.; Ou, B.; Prior, R.L.: The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53, 1841–1856 (2005)

    Article  Google Scholar 

  60. Ahmad, M.; Gani, A.; Hassan, I.; Huang, Q.; Shabbir, H.: Production and characterization of starch nanoparticles by mild alkali hydrolysis and ultra-sonication process. Sci. Rep. 10(1), 1–11 (2020). https://doi.org/10.1038/s41598-020-60380-0

    Article  Google Scholar 

  61. Roche, F.H.: Natural antioxidants exploited commercially (1990)

  62. Cuzzucoli, V., et al.: Intermolecular interaction and solid state characterization of abietic acid/chitosan solid dispersions possessing antimicrobial and antioxidant properties. Eur. J. Pharm. Biopharm. 125, 114–123 (2018). https://doi.org/10.1016/j.ejpb.2018.01.012

    Article  Google Scholar 

  63. Sridhar, K.; Charles, A.L.: Department of tropical agriculture and international cooperation, national pingtung. Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2018.09.040

    Article  Google Scholar 

  64. Cuvelier, M.E.; Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 30, 25–30 (1995)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the substantial financial support provided by the General- Direction of Scientific Research and Technology Development (DGRSDT, MESRS, Algeria).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Amin Bezzekhami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezzekhami, M.A., Harrane, A., Belalia, M. et al. Green Synthesis of Starch Nanoparticles (SNPs) by Esterification with Rosin Acid Catalyzed by Maghnite-H+ (Algerian Montmorillonite) with Enhanced Antioxidant Activity. Arab J Sci Eng 48, 311–326 (2023). https://doi.org/10.1007/s13369-022-07033-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07033-8

Keywords

Navigation