Skip to main content
Log in

Bulk polycondensation of lactic acid by Maghnite-H+ a non-toxic catalyst

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this study, we report a novel approach to preparing poly (D, L-lactic acid) (PLA) as a biodegradable polymer. PLA was prepared by direct polycondensation of D, L-lactic acid using Maghnite-H+, a non-toxic proton exchanged Montmorillonite clay, as catalyst. We investigated in detail, the reaction conditions for the simple direct polycondensation of D,L-lactic acid, including the reaction times, temperatures, and catalyst amount. The molecular weight of synthesized PLA is dependent on both the reaction temperature, amount of catalyst and time. Kinetics indicated that the polycondensation of lactic acid behaves as second-order reaction mechanism. The method for PLA synthesis established here will facilitate production of PLA of various molecular weights, which may have a potential utility as biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig.4
Fig. 5

Similar content being viewed by others

References

  1. Anderson JM, Shive MS (1997) Adv Drug Deliv Rev 28:5

    Article  CAS  Google Scholar 

  2. Sodergard A, Stolt M (2002) Prog Polym Sci 27:1123

    Article  CAS  Google Scholar 

  3. Okada M (2002) Prog Polym Sci 27:87

    Article  CAS  Google Scholar 

  4. Wee YJ, Kim JN, Ryu HW (2006) Food Technol Biotech 44:163

    CAS  Google Scholar 

  5. Tokiwa Y, Calabia BP (2006) Appl Microbiol Biotech 72:244

    Article  CAS  Google Scholar 

  6. Chandre R, Rustgim R (1998) Prog Polym Sci 23:1273

    Article  Google Scholar 

  7. Amass W, Amass A, Tighe B (1998) Polym Int 49:89

    Article  Google Scholar 

  8. Vert M, Mauduit J, Li S (1994) Biomaterials 15:1209

    Article  CAS  Google Scholar 

  9. Leemslag JW, Pennings AJ (1987) Makromol Chem 188:1809

    Article  Google Scholar 

  10. Kricheldorf HR, Lee SR (1995) Polymer 36:2995

    Article  CAS  Google Scholar 

  11. Nyce GW, Glauser T, Connor EF, Mock A, Waymouth RM, Hedrick JL (2003) J Am Chem Soc 125:3046

    Article  CAS  Google Scholar 

  12. Dechy-Cabaret O, Martin-Vaca B, Bourissou D (2004) Chem Rev 104:6147

    Article  CAS  Google Scholar 

  13. Kunioka M, Wang Y, Onozawa S (2005) Macromol Symp 224:167

    Article  CAS  Google Scholar 

  14. Wu JC, Yu TL, Chen CT, Lin CC (2006) Coord Chem Rev 250:602

    Article  CAS  Google Scholar 

  15. Ajioka M, Enomoto K, Suzuki K, Yamaguchi A (1995) Bull Chem Soc Jpn 68:2125

    Article  CAS  Google Scholar 

  16. Otera J, Kawada K, Yano T (1996) Chem Lett 225

  17. Hiltunen K, Seppala JV, Harkonen M (1997) Macromolecules 30:373

    Article  CAS  Google Scholar 

  18. Moon SI, Lee CW, Miyamoto M, Kimura Y (2000) J Polym Sci A 38:1673

    Article  CAS  Google Scholar 

  19. Moon SI, Taniguchi I, Miyamoto M, Kimura Y, Lee CW (2001) High Perform Polym 13:189

    Article  Google Scholar 

  20. Kim KW, Woo SI (2002) Macromol Chem Phys 203:2245

    Article  CAS  Google Scholar 

  21. Kajiyama T, Taguchi T, Kobayashi H, Kataoka K, Tanaka J (2003) Polym Bull 50:69

    Article  CAS  Google Scholar 

  22. Zhao YM, Wang ZY, Wang J, Mai HZ, Yan B, Yang F (2004) J Appl Polym Sci 91:2143

    Article  CAS  Google Scholar 

  23. Shyamroy S, Garnaik B, Sivaram S (2005) J Polym Sci A 43:2164–2177

    Article  CAS  Google Scholar 

  24. Nagahata R, Sano D, Suzuki H, Takeuchi K (2007) Macromol Rapid Commun 28:437

    Article  CAS  Google Scholar 

  25. Chen GX, Kim HS, Kim ES, Yoon JS (2006) Eur Polym J 42:468

    Article  CAS  Google Scholar 

  26. Takasu A, Narukawa Y, Hirabayashi T (2006) J Polym Sci A 44:5247

    Article  CAS  Google Scholar 

  27. Liu CC, Chang KY, Wang YJ (2010) J Polym Res 17(4):459

    Article  CAS  Google Scholar 

  28. Wang ZY, Li XW, Li JN, Tao JQ (2009) J Polym Res 16(3):255

    Article  CAS  Google Scholar 

  29. Kaplan H (1966) U.S.Patent 3287422

  30. Thomas CL, Hickey J, Stecker G (1950) Ind Eng Chem 42:866

    Article  CAS  Google Scholar 

  31. Hojabri F (1971) J Appl Chem Biotechnol 21:87

    Article  CAS  Google Scholar 

  32. Harrane A, Meghabar R, Belbachir M (2002) Int J Mol Sci 3:790

    Article  CAS  Google Scholar 

  33. Harrane A, Meghabar R, Belbachir M (2006) Reac Func Polym 66:1696

    Article  CAS  Google Scholar 

  34. Belbachir M (2006) US PATENT US 7,094,823, B2

  35. Ayat M, Harrane A, Belbachir M (2008) J App Polym Sci 109:1476

    Article  Google Scholar 

  36. Haouas M, Harrane A, Belbachir M, Taulelle F (2007) J Polym Sci B Polym Phy 45:3060

    Article  CAS  Google Scholar 

  37. Harrane A, Belbachir M (2007) Macromol Symp 247:1

    Article  Google Scholar 

  38. Harrane A, Naar N, Belbachir M (2007) Mat Lett 61:3555

    Article  CAS  Google Scholar 

  39. Ballantine JA, Davies M, Purnell H (1981) J C S Chem Comm 427

  40. Kaitian X, Kozluca A, Denkbas EB, Piskin E (1996) Tr J Chem 20:43

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Harrane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harrane, A., Belaouedj, M.A., Meghabar, R. et al. Bulk polycondensation of lactic acid by Maghnite-H+ a non-toxic catalyst. J Polym Res 19, 9785 (2012). https://doi.org/10.1007/s10965-011-9785-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-011-9785-1

Keywords

Navigation