Skip to main content
Log in

An Uncertain Optimization Method Based on Adaptive Discrete Approximation Rejection Sampling for Stochastic Programming with Incomplete Knowledge of Uncertainty

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Stochastic programming has been widely used in various application scenarios and theoretical research works. However, these excellent methods depend on specific explicit probability modeling with complete knowledge of uncertainty, which is very limited in practical problem since there is usually no way to abstract complex uncertainties into the commonly used known probability models. In this paper, a novel generative model named the Adaptive Discrete Approximation Rejection Sampling is proposed for stochastic programming with incomplete knowledge of uncertainty, which can not only simulate uncertain scenarios from a complex explicit probability model that cannot meet the constraints of existing sampling methods, but also even simulate scenarios from a sample set related to uncertainty when the specific explicit probability model of uncertainty is missing or unavailable. The method is to establish the easy-to-sample proposal distribution by approximately transforming the complex hard-to-sample target probability model, to make the proposal distribution close enough to the target distribution, so as to achieve an efficient sampling while ensuring the performance of the model. On this basis, combining the Monte Carlo method and heuristic optimization, an uncertain optimization model for stochastic programming with incomplete knowledge of uncertainty is further constructed, to solve the unavailability of the existing stochastic programming methods in the absence of explicit probability model of uncertainty. Experimental results show the advantages of the proposed method in terms of applicability, adaptability, accuracy, efficiency and model performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fernández, E.; Hinojosa, Y.; Puerto, J.; Saldanha-da-Gama, F.: New algorithmic framework for conditional value at risk: Application to stochastic fixed-charge transportation. Eur. J. Oper. Res. 277, 215–226 (2019). https://doi.org/10.1016/j.ejor.2019.02.010

    Article  MathSciNet  MATH  Google Scholar 

  2. Liu, X.; Küçükyavuz, S.; Noyan, N.: Robust multicriteria risk-averse stochastic programming models. Ann. Oper. Res. 259, 259–294 (2017). https://doi.org/10.1007/s10479-017-2526-z

    Article  MathSciNet  MATH  Google Scholar 

  3. Ahmadizar, F.; Rabanimotlagh, A.; Arkat, J.: Stochastic group shop scheduling with fuzzy due dates. J. Intell. Fuzzy Syst. 33, 2075–2084 (2017). https://doi.org/10.3233/JIFS-16164

    Article  Google Scholar 

  4. Fu, C.; Zhu, N.; Ma, S.: A stochastic program approach for path reconstruction oriented sensor location model. Transp. Res. Part B Methodol. 102, 210–237 (2017). https://doi.org/10.1016/j.trb.2017.05.013

    Article  Google Scholar 

  5. Masmoudi, M.; Abdelaziz, F.: Ben: Portfolio selection problem: a review of deterministic and stochastic multiple objective programming models. Ann. Oper. Res. 267, 335–352 (2018). https://doi.org/10.1007/s10479-017-2466-7

    Article  MathSciNet  MATH  Google Scholar 

  6. Shahkoomahalli, A.; Koochaki, A.; Shayanfar, H.: Risk-based electrical-thermal scheduling of a large-scale virtual power plant using downside risk constraints for participating in energy and reserve markets. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-05722-4

    Article  Google Scholar 

  7. Xie, F.; Huang, Y.: A multistage stochastic programming model for a multi-period strategic expansion of biofuel supply chain under evolving uncertainties. Transp. Res. Part E Logist. Transp. Rev. 111, 130–148 (2018). https://doi.org/10.1016/j.tre.2018.01.015

    Article  Google Scholar 

  8. Wang, L.: A two-stage stochastic programming framework for evacuation planning in disaster responses. Comput. Ind. Eng. 145, 106458 (2020). https://doi.org/10.1016/j.cie.2020.106458

    Article  Google Scholar 

  9. Cunha, P.S.A.; Raupp, F.M.P.; Oliveira, F.: A two-stage stochastic programming model for periodic replenishment control system under demand uncertainty. Comput. Ind. Eng. 107, 313–326 (2017). https://doi.org/10.1016/j.cie.2017.03.025

    Article  Google Scholar 

  10. Zhan, Y.; Zheng, Q.P.; Wang, J.; Pinson, P.: Generation expansion planning with large amounts of wind power via decision-dependent stochastic programming. IEEE Trans. Power Syst. 32, 3015–3026 (2017). https://doi.org/10.1109/TPWRS.2016.2626958

    Article  Google Scholar 

  11. Wang, K.; Jacquillat, A.: A stochastic integer programming approach to air traffic scheduling and operations. Oper. Res. 68, 1375–1402 (2020). https://doi.org/10.1287/opre.2020.1985

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, X.; Yang, D.; Hu, M.: A scenario-based stochastic programming approach for the product configuration problem under uncertainties and carbon emission regulations. Transp. Res. Part E Logist. Transp. Rev. 115, 126–146 (2018). https://doi.org/10.1016/j.tre.2018.04.013

    Article  Google Scholar 

  13. Fan, Y.; Schwartz, F.; Voß, S.; Woodruff, D.L.: Stochastic Programming for Flexible Global Supply Chain Planning. Springer (2017)

    Book  MATH  Google Scholar 

  14. Amelian, S.S.; Sajadi, S.M.; Navabakhsh, M.; Esmaelian, M.: Multi-objective optimization for stochastic failure-prone job shop scheduling problem via hybrid of NSGA-II and simulation method. Expert Syst. (2019). https://doi.org/10.1111/exsy.12455

    Article  Google Scholar 

  15. Babonneau, F.; Haurie, A.; Loulou, R.; Vielle, M.: Combining stochastic optimization and monte carlo simulation to deal with uncertainties in climate policy assessment. Environ. Model. Assess. 17, 51–76 (2012). https://doi.org/10.1007/s10666-011-9275-1

    Article  Google Scholar 

  16. Kim, H.W.; Lee, D.H.: A sample average approximation algorithm for selective disassembly sequencing with abnormal disassembly operations and random operation times. Int. J. Adv. Manuf. Technol. 96, 1341–1354 (2018). https://doi.org/10.1007/s00170-018-1667-9

    Article  Google Scholar 

  17. Bei, X.; Zhu, X.; Coit, D.W.: A risk-averse stochastic program for integrated system design and preventive maintenance planning. Eur. J. Oper. Res. 276, 536–548 (2019). https://doi.org/10.1016/j.ejor.2019.01.038

    Article  MathSciNet  MATH  Google Scholar 

  18. Masri, H.: A multiple stochastic goal programming approach for the agent portfolio selection problem. Ann. Oper. Res. 251, 179–192 (2017). https://doi.org/10.1007/s10479-015-1884-7

    Article  MathSciNet  MATH  Google Scholar 

  19. Masri, H.; Abdulla, Y.: A multiple objective stochastic programming model for working capital management. Technol. Forecast. Soc. Change. 131, 141–146 (2018). https://doi.org/10.1016/j.techfore.2017.05.006

    Article  Google Scholar 

  20. Azimian, A.; Aouni, B.: Supply chain management through the stochastic goal programming model. Ann. Oper. Res. 251, 351–365 (2017). https://doi.org/10.1007/s10479-015-2007-1

    Article  MathSciNet  MATH  Google Scholar 

  21. Hu, Z.; Hu, G.: A multi-stage stochastic programming for lot-sizing and scheduling under demand uncertainty. Comput. Ind. Eng. 119, 157–166 (2018). https://doi.org/10.1016/j.cie.2018.03.033

    Article  Google Scholar 

  22. Ridley, G.; Forget, B.: A simple method for rejection sampling efficiency improvement on SIMT architectures. Stat. Comput. 31, 1–11 (2021). https://doi.org/10.1007/s11222-021-10003-z

    Article  MathSciNet  MATH  Google Scholar 

  23. Robert, C.P.; Casella, G.: Monte Carlo Statistical Methods, Vol. 2. Springer, New York (2004)

    Book  MATH  Google Scholar 

  24. Rao, V.; Lin, L.; Dunson, D.B.: Data augmentation for models based on rejection sampling. Biometrika 103, 319–335 (2016). https://doi.org/10.1093/biomet/asw005

    Article  MathSciNet  MATH  Google Scholar 

  25. Gilks, W.R.; Wild, P.: Adaptive rejection sampling for gibbs sampling. Appl. Stat. 41, 337–348 (1992)

    Article  MATH  Google Scholar 

  26. Martino, L.; Louzada, F.: Adaptive rejection sampling with fixed number of nodes. Commun. Stat. Simul. Comput. 48, 655–665 (2019). https://doi.org/10.1080/03610918.2017.1395039

    Article  MathSciNet  MATH  Google Scholar 

  27. Ekblom, J.; Blomvall, J.: Importance sampling in stochastic optimization: An application to intertemporal portfolio choice. Eur. J. Oper. Res. 285, 106–119 (2020). https://doi.org/10.1016/j.ejor.2019.01.013

    Article  MathSciNet  MATH  Google Scholar 

  28. Botts, C.: A modified adaptive accept-reject algorithm for univariate densities with bounded support. J. Stat. Comput. Simul. 81, 1039–1053 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nemeth, C.; Fearnhead, P.: Stochastic gradient Markov Chain Monte Carlo. J. Am. Stat. Assoc. 116, 433–450 (2021). https://doi.org/10.1080/01621459.2020.1847120

    Article  MathSciNet  MATH  Google Scholar 

  30. Hu, Z.; Fu, C.; Zhou, L.; Guo, Z.: Distributed Kalman filter based on Metropolis-Hastings sampling strategy. Mach. Vis. Appl. 29, 1033–1040 (2018). https://doi.org/10.1007/s00138-018-0938-7

    Article  Google Scholar 

  31. Marcotte, D.; Allard, D.: Gibbs sampling on large lattice with GMRF. Comput. Geosci. 111, 190–199 (2018). https://doi.org/10.1016/j.cageo.2017.11.012

    Article  Google Scholar 

  32. Zhao, R.; Li, Y.; Sun, Y.: Statistical convergence of the EM algorithm on Gaussian mixture models. Electron. J. Stat. 14, 632–660 (2020). https://doi.org/10.1214/19-ejs1660

    Article  MathSciNet  MATH  Google Scholar 

  33. Peng, W.: Model selection for Gaussian mixture model based on desirability level criterion. Optik (Stuttg). 130, 797–805 (2017). https://doi.org/10.1016/j.ijleo.2016.10.125

    Article  Google Scholar 

  34. Sethuraman, R.R.; Athisayam, J.S.K.: An improved feature selection based on naive bayes with kernel density estimator for opinion mining. Arab. J. Sci. Eng. 46, 4059–4071 (2021). https://doi.org/10.1007/s13369-021-05381-5

    Article  Google Scholar 

  35. Das, S.K.: An approach to optimize the cost of transportation problem based on triangular fuzzy programming problem. Complex Intell. Syst. (2021). https://doi.org/10.1007/s40747-021-00535-2

    Article  Google Scholar 

  36. El Alaoui, M.: Fuzzy goal programming for biodiesel production. Int. J. Green Energy. 17, 644–651 (2020). https://doi.org/10.1080/15435075.2020.1779075

    Article  Google Scholar 

  37. Jin, L.; Zhang, C.; Wen, X.; Sun, C.; Fei, X.: A neutrosophic set-based TLBO algorithm for the flexible job-shop scheduling problem with routing flexibility and uncertain processing times. Complex Intell. Syst. 7, 2833–2853 (2021). https://doi.org/10.1007/s40747-021-00461-3

    Article  Google Scholar 

  38. Ye, J.: Modeling and stability analysis methods of neutrosophic transfer functions. Soft Comput. 24, 9039–9048 (2020). https://doi.org/10.1007/s00500-019-04434-0

    Article  Google Scholar 

  39. Fan, C.; Fan, E.; Chen, J.; Ye, J.; Zhou, K.: Single-value neutrosophic cosine measure for evaluation of port logistics competitiveness. J. Intell. Fuzzy Syst. 39, 4667–4675 (2020). https://doi.org/10.3233/JIFS-200598

    Article  Google Scholar 

  40. Du, S.; Ye, J.; Yong, R.; Zhang, F.: Some aggregation operators of neutrosophic Z-numbers and their multicriteria decision making method. Complex Intell. Syst. 7, 429–438 (2021). https://doi.org/10.1007/s40747-020-00204-w

    Article  Google Scholar 

  41. Liu, S.; Yang, Y.; Huang, J.; Jiao, Y.; Wang, Y.: Non-asymptotic error bounds for bidirectional GANs. Adv. Neural Inf. Process. Syst. 34 (2021)

  42. Wu, Z.; Li, G.; Liu, Q.; Xu, G.; Chen, E.; Member, S.: Covering the sensitive subjects to protect personal privacy in personalized recommendation. IEEE Trans. Serv. Comput. 11, 493–506 (2018)

    Article  Google Scholar 

  43. Peña, J.M.; Latorre, A.; Jérusalem, A.: SoftFEM : the soft finite element method. Int. J. Numer. Methods Eng. (2019). https://doi.org/10.1002/nme.6029

    Article  MathSciNet  Google Scholar 

  44. Wang, R.; Wu, Z.; Lou, J.; Jiang, Y.: Attention-based dynamic user modeling and Deep Collaborative filtering recommendation. Expert Syst. Appl. 188, 116036 (2021)

    Article  Google Scholar 

  45. Bai, B.; Li, G.; Wang, S.; Wu, Z.; Yan, W.: Time series classification based on multi-feature dictionary representation and ensemble learning. Expert Syst. Appl. 169, 114162 (2021). https://doi.org/10.1016/j.eswa.2020.114162

    Article  Google Scholar 

  46. Yan, W.; Li, G.; Wu, Z.; Wang, S.; Yu, P.S.: Extracting diverse-shapelets for early classification on time series. World Wide Web J. 23, 3055–3081 (2020)

    Article  Google Scholar 

  47. Li, G.; Yan, W.; Wu, Z.: Discovering shapelets with key points in time series classification. Expert Syst. Appl. 132, 76–86 (2019). https://doi.org/10.1016/j.eswa.2019.04.062

    Article  Google Scholar 

  48. Fang, Z.; Feng, H.; Huang, S.; Zhou, D.: Theory of deep convolutional neural networks II : spherical analysis. Neural Netw. 131, 154–162 (2020). https://doi.org/10.1016/j.neunet.2020.07.029

    Article  MATH  Google Scholar 

  49. Zhong, G.; Gao, W.; Liu, Y.; Yang, Y.; Wang, D.: Generative adversarial networks with decoder–encoder output noises. Neural Netw. 127, 19–28 (2020). https://doi.org/10.1016/j.neunet.2020.04.005

    Article  MATH  Google Scholar 

  50. Yang, M.; Wang, X.; Lu, Y.; Lv, J.; Shen, Y.; Li, C.: Plausibility-promoting generative adversarial network for abstractive text summarization with multi-task constraint. Inf. Sci. (Ny) 521, 46–61 (2020). https://doi.org/10.1016/j.ins.2020.02.040

    Article  Google Scholar 

  51. Ugot, C.Y.O.: A review of generative adversarial networks and its application in cybersecurity. Artif. Intell. Rev. 53, 1721–1736 (2020). https://doi.org/10.1007/s10462-019-09717-4

    Article  Google Scholar 

  52. Zhou, X.; Jiao, Y.; Liu, J.; Huang, J.: A deep generative approach to conditional sampling. J. Am. Stat. Assoc. 1–28 (2021)

  53. Gronauer, S.; Diepold, K.: Multi-Agent Deep Reinforcement Learning: A Survey. Artif. Intell. Rev. Springer, Netherlands (2021)

    Google Scholar 

  54. Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; Chen, Y.; Lillicrap, T.; Hui, F.; Sifre, L.; Van Den Driessche, G.; Graepel, T.; Hassabis, D.: Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017). https://doi.org/10.1038/nature24270

    Article  Google Scholar 

  55. Mohammadi Bidhandi, H.; Patrick, J.: Accelerated sample average approximation method for two-stage stochastic programming with binary first-stage variables. Appl. Math. Model. 41, 582–595 (2017). https://doi.org/10.1016/j.apm.2016.09.019

    Article  MathSciNet  MATH  Google Scholar 

  56. Bugg, C.; Aswani, A.: Logarithmic sample bounds for Sample Average Approximation with capacity- or budget-constraints. Oper. Res. Lett. 49, 231–238 (2021). https://doi.org/10.1016/j.orl.2021.01.007

    Article  MathSciNet  MATH  Google Scholar 

  57. Liu, H.; Wang, X.; Yao, T.; Li, R.; Ye, Y.: Sample average approximation with sparsity-inducing penalty for high-dimensional stochastic programming. Math. Program. 178, 69–108 (2019). https://doi.org/10.1007/s10107-018-1278-0

    Article  MathSciNet  MATH  Google Scholar 

  58. Saji, Y.; Barkatou, M.: A discrete bat algorithm based on Lévy flights for Euclidean traveling salesman problem. Expert Syst. Appl. 172, 114639 (2021). https://doi.org/10.1016/j.eswa.2021.114639

    Article  Google Scholar 

  59. Mavrovouniotis, M.; Muller, F.M.; Yang, S.: Ant colony optimization with local search for dynamic traveling salesman problems. IEEE Trans. Cybern. 47, 1743–1756 (2017). https://doi.org/10.1109/TCYB.2016.2556742

    Article  Google Scholar 

  60. Pandiri, V.; Singh, A.: A swarm intelligence approach for the colored traveling salesman problem. Appl. Intell. 48, 4412–4428 (2018). https://doi.org/10.1007/s10489-018-1216-0

    Article  Google Scholar 

  61. Raykar, V.C.; Duraiswami, R.; Zhao, L.H.: Fast computation of kernel estimators. J. Comput. Graph Stat. 19, 205–220 (2010)

    Article  MathSciNet  Google Scholar 

  62. Marron, J.S.; Wand, M.P.: Exact mean integrated squared error. Ann. Stat. 20, 712–736 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The funding was provided by the Educational Commission of Guangdong Province, China (No.: 2020ZDZX3093).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhurong Dong or Chen Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, B., Dong, Z., Zhao, C. et al. An Uncertain Optimization Method Based on Adaptive Discrete Approximation Rejection Sampling for Stochastic Programming with Incomplete Knowledge of Uncertainty. Arab J Sci Eng 48, 1399–1425 (2023). https://doi.org/10.1007/s13369-022-06835-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06835-0

Keywords

Navigation