Skip to main content

Advertisement

Log in

A Novel Loss Model Control-Based Efficiency Enhancement Scheme for IFOC Induction Motor Drive

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a novel method for efficiency enhancement of indirect field-oriented control of induction motor drive. The efficiency of the electric vehicle is improved by optimization of rotor flux in the facets of load variations. Model reference adaptive system (MRAS)-based estimation of speed and torque is used in loss model to evaluate the loss components corresponding to d-axis and q-axis stator current. The improved efficiency is achieved by making these losses equal. The error between the losses is reduced by PI regulator to obtain the most suitable rotor flux of the drive. Furthermore, particle swarm optimization, grey wolf optimization and salp swarm algorithms are used to tune the parameters of PI controller. The suggested scheme is simulated by considering the operation of induction motor drive under realistic conditions. The results obtained are compared with the standard constant rotor flux operation. The sensitivity of the suggested scheme to variations in induction motor parameters is also carried out to ensure its robustness. It is revealed from the results that salp swarm algorithm (SSA) provides the significant improvement in efficiency of induction motor in comparison to the constant flux operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(i_{ds} \& i_{qs}\) :

Direct axis and quadrature axis stator current space vector

\(i_{dr} \& i_{qr}\) \(v_{ds}\) :

Direct axis and quadrature axis rotor current space vector Direct axis stator voltage space vector

\(v_{ds}\) :

Direct axis stator voltage space vector

\(i_{a} ,i_{b} \& i_{c}\) :

Stator phase currents vector

\(\psi_{ds} \& \psi_{dr}\) :

Direct axis and quadrature axis stator flux space vector

\(\psi_{qs} \& \psi_{qr}\) :

Direct axis and quadrature axis rotor flux space vector

\(R_{s}\) :

Stator resistance

\(R_{r}\) :

Rotor resistance

\(L_{s}\) :

Stator inductance

\(L_{r}\) :

Rotor inductance

\(L_{m}\) :

Mutual inductance

\(k_{t}\) :

Motor torque constant

\(k_{h} \& k_{e}\) :

Eddy current and hysteresis current constant

\(\omega_{e}\) :

Rotor electrical speed

\(\gamma\) :

Ratio of current \(i_{ds} \& i_{qs}\)

References

  1. Galus, M.D.; Waraich, R.A.; Noembrini, F.; Steurs, K.; Georges, G.; Boulouchos, K.; Axhausen, K.W.; Andersson, G.: Integrating power systems, transport systems and vehicle technology for electric mobility impact assessment and efficient control. IEEE Trans. Smart Grid 3(2), 934–949 (2012)

    Article  Google Scholar 

  2. Waide, P.; and Brunner, C. U.: Energy-efficiency policy opportunities for electric motor-driven systems, Cedex, France: Int. Energy Agency, (2011)

  3. Kumar, M.S.; Revankar, S.T.: Development scheme and key technology of an electric vehicle: An overview. Renew. Sustain. Energy Rev. 70, 1266–1285 (2017)

    Article  Google Scholar 

  4. Zhu, X.; Weiqiang, Wu.; Quan, Li.; Xiang, Z.; Weiwei, Gu.: Design and multi-objective stratified optimization of a less-rare-earth hybrid permanent magnets motor with high torque density and low cost. IEEE Trans. Energy Convers. 34(3), 1178–1189 (2018)

    Article  Google Scholar 

  5. Borisevich, A.; Schullerus, G.: Energy efficient control of an induction machine under torque step changes. IEEE Trans. Energy Convers. 31(4), 1295–1303 (2016)

    Article  Google Scholar 

  6. Lorenz, R.D.; Lipo, T.A.; Novotny, D.W.: Motion control with induction motors. Proc. IEEE 82(8), 1215–1240 (1994)

    Article  Google Scholar 

  7. Bazzi, A.M.; Krein, P.T.: Review of methods for real-time loss minimization in induction machines. IEEE Trans. Ind. Appl. 46(6), 2319–2328 (2010)

    Article  Google Scholar 

  8. Qu, Z.; Ranta, M.; Hinkkanen, M.; Luomi, J.: Loss-minimizing flux level control of induction motor drives. IEEE Trans. Ind. Appl. 48(3), 952–961 (2012)

    Article  Google Scholar 

  9. Uddin, M.N.; Nam, S.W.: Development of a nonlinear and model-based online loss minimization control of an IM drive. IEEE Trans. Energy Convers. 23(4), 1015–1024 (2008)

    Article  Google Scholar 

  10. Sruthi, M.P.; Nagamani, C.; Saravana Ilango, G.: An improved algorithm for direct computation of optimal voltage and frequency for induction motors. Eng. Sci. Technol., Int. J. 20(5), 1439–1449 (2017)

    Google Scholar 

  11. de Pelegrin, J.; Torrico, C.R.C.; Carati, E.G.: A model-based suboptimal control to improve induction motor efficiency. J. Control, Autom. Electric. Syst. 27(1), 69–81 (2016)

    Article  Google Scholar 

  12. Su, J.; Gao, R.; Husain, I.: Model predictive control based field-weakening strategy for traction EV used induction motor. IEEE Trans. Ind. Appl. 54(3), 2295–2305 (2018)

    Article  Google Scholar 

  13. Sridharan, S.; Krein, P.T.: Minimization of system-level losses in VSI-based induction motor drives: offline strategies. IEEE Trans. Ind. Appl. 53(2), 1096–1105 (2016)

    Article  Google Scholar 

  14. Dong, G.; Ojo, O.: Efficiency optimizing control of induction motor using natural variables. IEEE Trans. Industr. Electron. 53(6), 1791–1798 (2006)

    Article  Google Scholar 

  15. Ebrahim, O.S.; Badr, M.A.; Elgendy, A.S.; Jain, P.K.: ANN-based optimal energy control of induction motor drive in pumping applications. IEEE Trans. Energy Convers. 25(3), 652–660 (2010)

    Article  Google Scholar 

  16. Titus, J.; Teja, J.; Hatua, K.; Vasudevan, K.: An improved scheme for extended power loss ride-through in a voltage-source-inverter-fed vector-controlled induction motor drive using a loss minimization technique. IEEE Trans. Ind. Appl. 52(2), 1500–1508 (2015)

    Google Scholar 

  17. Grouni, S.; Kidouche, R.; Touhami, O.: Novel loss optimization in induction machines with optimum rotor flux control. Int. J. Syst. Control 1(4), 163–169 (2010)

    Google Scholar 

  18. Hesari, S.; Hoseini, A.: A new approach to improve induction motor performance in light-load conditions. J. Electric. Eng. Technol. 12(3), 1195–1202 (2017)

    Article  Google Scholar 

  19. Sreejeth, M.; Singh, M.; Kumar, P.: Efficiency enhancement for indirect vector-controlled induction motor drive. Int. J. Electron. 106(9), 1281–1294 (2019)

    Article  Google Scholar 

  20. Odhano, S.A.; Bojoi, R.; Boglietti, A.; Roşu, ŞG.; Griva, G.: Maximum efficiency per torque direct flux vector control of induction motor drives. IEEE Trans. Ind. Appl. 51(6), 4415–4424 (2015)

    Article  Google Scholar 

  21. Bose, B.K.: Modern power electronics and AC drives 123. Prentice hall, Upper Saddle River. NJ (2002)

    Google Scholar 

  22. Orlowska-Kowalska, T.; Dybkowski, M.: Improved MRAS-type speed estimator for the sensorless induction motor drive. COMPEL - Int. J. Comput. Math. Electric. Electron. Eng. 26(4), 1161–1174 (2007)

    Article  MATH  Google Scholar 

  23. Orlowska-Kowalska, T.; Dybkowski, M.: Stator-current-based MRAS estimator for a wide range speed-sensorless induction-motor drive. IEEE Trans. Industr. Electron. 57(4), 1296–1308 (2010)

    Article  Google Scholar 

  24. Stopa, M.M.; Saldanha, M.A.; Luiz, A.S.A.; Baccarini, L.M.R.; Lacerda, G.A.: A simple torque estimator for in-service efficiency determination of induction motors. IEEE Trans. Ind. Appl. 54(5), 4967–4976 (2018)

    Article  Google Scholar 

  25. Kumar, B.; Chauhan, Y.K.; Shrivastava, V.: Efficacy of different rule based fuzzy logic controllers for induction motor drive. Int. J. Mach. Learn. Comput. 2(2), 131 (2012)

    Article  Google Scholar 

  26. Ghaseminezhad, M.; Doroudi, A.; Hosseinian, S.H.; Jalilian, A.: Investigation of increased ohmic and core losses in induction motors under voltage fluctuation conditions. Iran. J. Sci. Technol., Trans. Electric. Eng. 43(2), 373–382 (2019)

    Article  Google Scholar 

  27. Odhano, S.A.; Bojoi, R.; Boglietti, A.; Rosu, S.G.; Griva, G.: Maximum efficiency per torque direct flux vector control of induction motor drives. IEEE Trans. Ind. Appl. 51(6), 4415–4424 (2015)

    Article  Google Scholar 

  28. Thangaraj, R.; Chelliah, T.R.; Pant, M.; Abraham, A.; Grosan, C.: Optimal gain tuning of PI speed controller in induction motor drives using particle swarm optimization. Logic J. IGPL 19(2), 343–356 (2011)

    Article  MathSciNet  Google Scholar 

  29. Hatta, N.M.; Zain, A.M.; Sallehuddin, R.; Shayfull, Z.; Yusoff, Y.: Recent studies on optimisation method of Grey Wolf Optimiser (GWO): a review (2014–2017). Artif. Intell. Rev. 52(4), 2651–2683 (2019)

    Article  Google Scholar 

  30. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M.: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Article  Google Scholar 

  31. Arfaoui, J.; Rezk, H.; Al-Dhaifallah, M.; Elyes, F.; Abdelkader, M.: Numerical performance evaluation of solar photovoltaic water pumping system under partial shading condition using modern optimization. Mathematics 7(11), 1123 (2019)

    Article  Google Scholar 

  32. Hoffman, E. O. and Gardner, R. H.: Evaluation of uncertainties in environmental radiological assessment models, in: Till, J.E.; Meyer, H.R. (eds) Radiological Assessments: a Textbook on Environmental Dose Assessment. Washington, DC: U.S. Nuclear Regulatory Commission; Report No. NUREG/CR-3332. (1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar.

Appendix

Appendix

See Table 14

Table 14 Drive Parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Kumar, B. & Rani, A. A Novel Loss Model Control-Based Efficiency Enhancement Scheme for IFOC Induction Motor Drive. Arab J Sci Eng 47, 14267–14282 (2022). https://doi.org/10.1007/s13369-022-06706-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06706-8

Keywords

Navigation