Skip to main content
Log in

In a Vented Square Enclosure, the Effect of a Flexible Baffle Attached to a Solid Cylinder on Mixed Convection

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The current study focuses on the transient mixed convection within a vented square enclosure with differentially heated vertical walls and a flexible baffle coupled to a circular solid cylinder. In numerical analysis, the COMSOL Multiphysics tool is used to simulate and solve two-dimensional governing equations using the Galerkin finite element approach and the arbitrary Lagrange–Euler (ALE) method, as well as the coupling of structure deflection and fluid flow. This work considered the effects of changing locations of flexible baffles attached to a cylinder on thermal and flow structures. The effect of several parameters, such as Richardson number (10–1 ≤ Ri ≤ 102), Cauchy number (10–12 ≤ Ca ≤ 10–4), and Reynolds numbers, (50 ≤ Re ≤ 250) on convective heat transfer characteristics are investigated for time 0.01 to 10 s. It is observed that changing time steps leads to a continuous change in fluid flow intensity which reflects on the deformation direction of the flexible baffle. The results indicated that the cavity with flexible baffle has the best average Nusselt number compared to cavities with rigid baffle and without baffles, respectively. As Re is raised from 50 to 250, the percentage of the average Nusselt number increased to 40% at Ri = 0.1 and 59% at Ri = 200.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Ca :

Cauchy number (−)

ds :

Dimensionless displacement vector

E :

The modulus of elasticity of the baffle

g :

Gravitational acceleration (m/s2)

kr :

Thermal conductivity ratio (-)

L:

Length & height of the cavity (m)

\(\overline{Nu }(t)\) :

Average Nusselt number

\({\overline{Nu} }_{m}\) :

Average Nusselt number over a cyclic period.

\({\mathbf{P}}^{*}\) :

Dimensionless pressure

Pr:

Prandtl number (νff)

q :

Heat transfer rate (W/m2)

R:

The radius of the solid cylinder

Re :

Reynolds number

Ri :

Richardson number

T* :

Temperature (K)

Tc * :

Cold surface Temperature (K)

T :

Ambient temperature

u :

Dimensionless velocity vector

\({\mathrm{u}}^{*}\) :

Velocity component in x-direction (m/s)

\({\mathrm{v}}^{*}\) :

Velocity component in the y-direction

v :

Velocity component in y-direction (m/s)

X, Y:

Dimensionless coordinate

x, y :

Cartesian coordinates (m

α :

Thermal diffusivity (m2/s)

β :

Thermal expansion coefficient (K1)

\(\gamma \) :

Nclination angle of the magnetic field

θ :

Dimensionless temperature (T-T∞/Th-T)

μ :

Dynamic viscosity (kg/ms):

ν :

Kinematic viscosity (μ /ρ)(Pa. s)

\(\rho \) :

Density (kg/m3)

φ :

Nanoparticle volume fraction (%)

\(\Psi \) :

Dimensionless stream function

\(\psi \) :

Dimensional stream function (m2/s

ω :

Angular velocity (rad/sec)

\(\Omega \) :

Dimensionless angular velocity

bf :

Base Fluid (pure)

c :

Cold

sp :

Solid particle

so :

Conductive solid cylinder

ALE:

Arbitrary Lagrangian-Euler

Cond:

Conduction

Conv:

Convection

FSI:

Fluid–structure interaction

LBM:

Lattice Boltzmann Method

References

  1. Ali, F.H.; Hamzah, H.K.; Abdulkadhim, A.: Numerical study of mixed convection nanofluid in an annulus enclosure between outer rotating cylinder and inner corrugation cylinder. Heat Transf.—Asian Res. 48(1), 343–360 (2019)

    Article  Google Scholar 

  2. Yan, S.R.; Pordanjani, A.H.; Aghakhani, S.; Goldanlou, A.S.; Afrand, M.: Managment of natural convection of nanofluids inside a square enclosure by different nano powder shapes in presence of Fins with different shapes and magnetic field effect. Adv. Powd. Technol. 31(7), 2759–2777 (2020)

    Article  Google Scholar 

  3. Sheikholeslami, M.; Hayat, T.; Alsaedi, A.: On the simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders. Int. J. Heat Mass Transf. 115, 981–991 (2017)

    Article  Google Scholar 

  4. Keyhani Asl, A., et al.: Comprehensive investigation of solid and porous fins influence on natural convection in an inclined rectangular enclosure. Int. J. Heat Mass Transf. 133, 729–744 (2019)

    Article  Google Scholar 

  5. Almensoury, M.F.; Hashim, A.S.; Hamzah, H.K.; Ali, F.H.: Numerical investigation of natural convection of a non-Newtonian nanofluid in an F-shaped porous cavity. Heat Transfer 50(3), 2403–2426 (2021)

    Article  Google Scholar 

  6. Kefayati, G.H.R.: Mixed convection of non-Newtonian nanofluid in an enclosure using Buongiorno’s mathematical model. Int. J. Heat Mass Transf. 108, 1481–1500 (2017)

    Article  Google Scholar 

  7. Ali, Z.; Zeeshan, A.; Bhatti, M.M.; Hobiny, A.; Saeed, T.: Insight into the dynamics of Oldroyd-B fluid over an upper horizontal surface of a paraboloid of revolution subject to chemical reaction dependent on the first-order activation energy. Arab. J. Sci. Eng. 46(6), 6039–6048 (2021)

    Article  Google Scholar 

  8. Izadi, S., et al.: A comprehensive review on mixed convection of nanofluids in various shapes of enclosures. Powder Technol. 343, 880–907 (2019)

    Article  Google Scholar 

  9. Oztop, H.F.; Al-Salem, K.: A review on entropy generation in natural and mixed convection heat transfer for energy systems. Renew. Sustain. Energy Rev. 16(1), 911–920 (2012)

    Article  Google Scholar 

  10. Alsabery, A., et al.: MHD convective heat transfer in a discretely heated square cavity with the conductive inner block using a two-phase nanofluid model. Sci. Rep. 8(1), 1–23 (2018)

    Article  Google Scholar 

  11. Alhashash, A.: Natural convection of nano liquid from a cylinder in the square porous enclosure using Buongiorno’s two-phase model. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  12. Abo-Elkhair, R.E.; Bhatti, M.M.; Mekheimer, Kh.S.: Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (Au–Cu nanoparticles) with moderate Reynolds number: an expanding horizon. Int. Commun. Heat Mass Transf. 123(105228), 1–18 (2021)

    Google Scholar 

  13. Zhang, L.; Nazar, T.; Bhatti, M.M.; Michaelides, E.E.: Stability analysis on the kerosene nanofluid flow with hybrid zinc/aluminum-oxide (ZnO-Al2O3) nanoparticles under Lorentz force. Int. J. Numer. Meth. Heat Fluid Flow (2021). https://doi.org/10.1108/HFF-02-2021-0103

    Article  Google Scholar 

  14. Bararnia, H.; Soleimani, S.; Ganji, D.D.: Lattice Boltzmann simulation of natural convection around a horizontal elliptic cylinder inside a square enclosure. Int. Commun. Heat Mass Transfer 38(10), 1436–1442 (2011)

    Article  Google Scholar 

  15. Vijaybabu, T.R.; Dhinakaran, S.: MHD Natural convection around a permeable triangular cylinder inside a square enclosure filled with Al2O3−H2O nanofluid: an LBM study. Int. J. Mech. Sci. 153–154, 500–516 (2019)

    Article  Google Scholar 

  16. Cho, H.W.; Park, Y.G.; Ha, M.Y.: The natural convection in a square enclosure with two hot inner cylinders, Part I: The effect of one elliptical cylinder with various aspect ratios in a vertical array. Int. J. Heat Mass Transf. 125, 815–827 (2018)

    Article  Google Scholar 

  17. Selimefendigil, F.; Öztop, H.F.: MHD mixed convection of nanofluid filled partially heated triangular enclosure with a rotating adiabatic cylinder. J. Taiwan Inst. Chem. Eng. 45(5), 2150–2162 (2014)

    Article  Google Scholar 

  18. Selimefendigil, F.; Öztop, H.F.: Laminar convective nanofluid flow over a backward-facing step with an elastic bottom wall. J. Therm. Sci. Eng. Appl. 10(4), 041003 (2018)

    Article  Google Scholar 

  19. Selimefendigil, F.; Öztop, H.F.; Chamkha, A.J.: MHD mixed convection in a nanofluid filled vertical lid-driven cavity having a flexible fin attached to its upper wall. J. Therm. Anal. Calorim. 135(1), 325–340 (2018)

    Article  Google Scholar 

  20. Al-Amiri, A.; Khanafer, K.: Fluid-structure interaction analysis of mixed convection heat transfer in a lid-driven cavity with a flexible bottom wall. Int. J. Heat Mass Transf. 54(17–18), 3826–3836 (2011)

    Article  MATH  Google Scholar 

  21. Selimefendigil, F.; Öztop, H.F.: Fluid-solid interaction of elastic-step type corrugation effects on the mixed convection of nanofluid in a vented cavity with a magnetic field. Int. J. Mech. Sci. 152, 185–197 (2019)

    Article  Google Scholar 

  22. Ghalambaz, M., et al.: Fluid-structure interaction of free convection in a square cavity divided by a flexible membrane and subjected to sinusoidal temperature heating. Int. J. Numer. Methods Heat Fluid Flow 30, 2883–2911 (2019)

    Article  Google Scholar 

  23. Selimefendigil, F.; Öztop, H.F.: MHD mixed convection of nanofluid in a flexible walled inclined lid-driven L-shaped cavity under the effect of internal heat generation. Phys. A Stat. Mech. Appl. 534, 122144 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Selimefendigil, F.; Öztop, H.F.: Forced convection in a branching channel with partly elastic walls and inner L-shaped conductive obstacle under the influence of magnetic field. Int. J. Heat Mass Transf. 144(118598), 1–14 (2019)

    Google Scholar 

  25. Khanafer, K.: Comparison of flow and heat transfer characteristics in a lid-driven cavity between flexible and modified geometry of a heated bottom wall. Int. J. Heat Mass Transf. 78, 1032–1041 (2014)

    Article  Google Scholar 

  26. Ghalambaz, M., et al.: Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity. Int. J. Therm. Sci. 111, 256–273 (2017)

    Article  Google Scholar 

  27. Jamesahar, E.; Ghalambaz, M.; Chamkha, A.J.: Fluid–solid interaction in natural convection heat transfer in a square cavity with a perfectly thermal-conductive flexible diagonal partition. Int. J. Heat Mass Transf. 100, 303–319 (2016)

    Article  Google Scholar 

  28. Jamesahar, E., et al.: Mixed convection heat transfer by nanofluids in a cavity with two oscillating flexible fins: a fluid-structure interaction approach. Appl. Math. Model. 82, 72–90 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Raisi, A.; Arvin, I.: A numerical study of the effect of fluid-structure interaction on transient natural convection in an air filled square cavity. Int. J. Therm. Sci. 128, 1–14 (2018)

    Article  Google Scholar 

  30. Alsabery, A., et al.: Fluid-structure interaction analysis of entropy generation and mixed convection inside a cavity with flexible right wall and heated rotating cylinder. Int. J. Heat Mass Transf. 140, 331–345 (2019)

    Article  Google Scholar 

  31. Ismael, M.A.; Jasim, H.F.: Role of the fluid-structure interaction in mixed convection in a vented cavity. Int. J. Mech. Sci. 135, 1–37 (2017). https://doi.org/10.1016/j.ijmecsci.2017.11.001

    Article  Google Scholar 

  32. van Loon, R.; Anderson, P.D.; Baaijens, F.P.; van de Vosse, F.N.: A three-dimensional fluid-structure interaction method for heart valve modelling. Comptes Rendus Mécanique 333, 856–866 (2005). https://doi.org/10.1016/j.crme.2005.10.008

    Article  MATH  Google Scholar 

  33. Donea, J.; Giuliani, S.; Halleux, J.P.: An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33(1–3), 689–723 (1982)

    Article  MATH  Google Scholar 

  34. Kuhl, E.; Hulshoff, S.; de Borst, R.: An arbitrary Lagrangian Eulerian finite-element approach for fluid-structure interaction phenomena. Int. J. Numer. Methods Eng. 57, 117–142 (2013)

    Article  MATH  Google Scholar 

  35. Yaseen, D.T.; Ismael, M.A.: Effect of deformable baffle on the mixed convection of non-newtonian fluid in a channel-cavity. Basrah J. Eng. Sci. 20(2), 18–26 (2020)

    Article  Google Scholar 

  36. Sabbar, W.A.; Ismael, A.M.; Almudhaffar, M.: Numerical investigation of fluid-structure interaction with mixed convection in an open cavity of flexible wall: effect of geonetrical parameter. Int. J. Eng. Technol. 8(15), 523–531 (2019)

    Google Scholar 

Download references

Funding

The authors would like to thank Al-Mustaqbal University College for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saba Y. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamzah, H.K., Al-Amir, Q.R.A., Abdulkadhim, A. et al. In a Vented Square Enclosure, the Effect of a Flexible Baffle Attached to a Solid Cylinder on Mixed Convection. Arab J Sci Eng 47, 15489–15504 (2022). https://doi.org/10.1007/s13369-022-06595-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-06595-x

Keywords

Navigation