Skip to main content
Log in

Revealing the Potential of Xylanase from a New Halophilic Microbulbifer sp. CL37 with Paper De-Inking Ability

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Paper de-inking is one of the critical processes in pulp and paper industry as it is ecofriendly and energy saving. This process requires microbial enzymes such as xylanases with ability to withstand harsh bioprocess conditions. Microbulbifer is a halophilic genus with ability to produce hydrolytic enzymes that could be applied in the biotechnological industry. So far, none of the xylanases from this genus have been studied, particularly in paper de-inking process. Therefore, in this study, the xylanase of a new halophilic bacterium, Microbulbifer sp. strain CL37, was characterized. Strain CL37 produced maximum amount of xylanase at 14th hour of incubation at 30 °C. The xylanase demonstrated optimal activity at 70 °C and pH 7. The xylanase was stable at wide range of NaCl (0–14%, w/v), in the presence of Al3+, Ca2+, Co2+, Cu+, Cu2+, Fe2+, Fe3+, Mn2+, Zn2+, acetone, chloroform, ethanol, sodium deoxycholate, Triton X-100, Tween 20, 40, 60, and 80, indicating that it is a halotolerant enzyme with high stability in various additives. The xylanase also demonstrated its ability to de-ink paper with considerably high efficiency (159%) as compared to other strains. The valuable characteristics possessed by xylanase of strain CL37 could potentially benefit to de-inking process in paper industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

The 16S rRNA gene (1475 bp) of Microbulbifer sp. strain CL37 is available at GenBank under accession of MK256319.

Code Availability

Not applicable.

References

  1. Enache, M.; Teodosiu, G.; Itoh, T.; Kamekura, M.; Stan-Lotter, H.: Halophilic microorganisms from man-made and natural hypersaline environments: physiology, ecology, and biotechnological potential. In: Stan-Lotter, H.; Fendrihan, S. (Eds.) Adaption of Microbial Life to Environmental Extremes: Novel Research Results and Application, pp. 201–226. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  2. Yin, J.; Chen, J.-C.; Wu, Q.; Chen, G.-Q.: Halophiles, coming stars for industrial biotechnology. Biotechnol. Adv. 33(7), 1433–1442 (2015)

    Article  Google Scholar 

  3. Zakaria, M.R.; Lam, M.Q.; Chen, S.J.; Karim, M.H.A.; Tokiman, L.; Yahya, A.; Shamsir, M.S.; Chong, C.S.: Genome sequence data of Mangrovimonas sp. strain CR14 isolated from mangrove forest at Tanjung Piai National Park, Malaysia. Data Brief 30, 105658 (2020)

    Article  Google Scholar 

  4. Thevarajoo, S.; Selvaratnam, C.; Goh, K.M.; Hong, K.W.; Chan, X.Y.; Chan, K.-G.; Chong, C.S.: Vitellibacter aquimaris sp. Nov., a marine bacterium isolated from seawater. Int. J. Syst. Evol. Microbiol. 66(9), 3662–3668 (2016)

    Article  Google Scholar 

  5. Singh, S.; Gupta, M.; Gupta, Y.: Microbial life at extreme of salt concentration: adaptation strategies. In: Singh, R.P.; Manchanda, G.; Maurya, I.K.; Wei, Y. (Eds.) Microbial Versatility in Varied Environments: Microbes in Sensitive Environments, pp. 35–49. Springer, Singapore (2020)

    Chapter  Google Scholar 

  6. Liu, C.; Baffoe, D.K.; Zhan, Y.; Zhang, M.; Li, Y.; Zhang, G.: Halophile, an essential platform for bioproduction. J. Microbiol. Methods 166, 105704 (2019)

    Article  Google Scholar 

  7. Chen, G.-Q.; Jiang, X.-R.: Next generation industrial biotechnology based on extremophilic bacteria. Curr. Opin. Biotechnol. 50, 94–100 (2018)

    Article  Google Scholar 

  8. Thatoi, H.; Behera, B.C.; Mishra, R.R.; Dutta, S.K.: Biodiversity and biotechnological potential of microorganisms from mangrove ecosystems: a review. Ann. Microbiol. 63(1), 1–19 (2013)

    Article  Google Scholar 

  9. Alves, K.J.; da Silva, M.C.P.; Cotta, S.R.; Ottoni, J.R.; van Elsas, J.D.; de Oliveira, V.M.; Andreote, F.D.: Mangrove soil as a source for novel xylanase and amylase as determined by cultivation-dependent and cultivation-independent methods. Braz. J. Microbiol. 51(1), 217–228 (2020)

    Article  Google Scholar 

  10. Lam, M.Q.; Oates, N.C.; Thevarajoo, S.; Tokiman, L.; Goh, K.M.; McQueen-Mason, S.J.; Bruce, N.C.; Chong, C.S.: Genomic analysis of a lignocellulose degrading strain from the underexplored genus Meridianimaribacter. Genomics 112(1), 952–960 (2020)

    Article  Google Scholar 

  11. Liew, K.J.; Teo, S.C.; Shamsir, M.S.; Sani, R.K.; Chong, C.S.; Chan, K.-G.; Goh, K.M.: Complete genome sequence of Rhodothermaceae bacterium RA with cellulolytic and xylanolytic activities. 3 Biotech 8(8), 1–8 (2018)

    Article  Google Scholar 

  12. Chen, S.J.; Lam, M.Q.; Thevarajoo, S.; Abd Manan, F.; Yahya, A.; Chong, C.S.: Genome analysis of cellulose and hemicellulose degrading Micromonospora sp. CP22. 3 Biotech 10(4), 160 (2020)

    Article  Google Scholar 

  13. Teo, S.C.; Liew, K.J.; Shamsir, M.S.; Chong, C.S.; Bruce, N.C.; Chan, K.-G.; Goh, K.M.: Characterizing a halo-tolerant GH10 xylanase from Roseithermus sacchariphilus strain RA and its CBM-truncated variant. Int. J. Mol. Sci. 20(9), 2284 (2019)

    Article  Google Scholar 

  14. Liew, K.J.; Ngooi, C.Y.; Shamsir, M.S.; Sani, R.K.; Chong, C.S.; Goh, K.M.: Heterologous expression, purification and biochemical characterization of a new endo-1, 4-β-xylanase from Rhodothermaceae bacterium RA. Protein Expr. Purif. 164, 105464 (2019)

    Article  Google Scholar 

  15. Singh, B.: Production, characteristics, and biotechnological applications of microbial xylanases. Appl. Microbiol. Biotechnol. 103(21–22), 8763–8784 (2019)

    Google Scholar 

  16. Chakdar, H.; Kumar, M.; Pandiyan, K.; Singh, A.; Nanjappan, K.; Kashyap, P.L.; Srivastava, A.K.: Bacterial xylanases: biology to biotechnology. 3 Biotech 6(2), 150 (2016)

    Article  Google Scholar 

  17. Walia, A.; Guleria, S.; Mehta, P.; Chauhan, A.; Parkash, J.: Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech 7(1), 11 (2017)

    Article  Google Scholar 

  18. Singh, A.; Varghese, L.M.; Yadav, R.D.; Mahajan, R.: A pollution reducing enzymatic deinking approach for recycling of mixed office waste paper. Environ. Sci. Pollut. Res. 27(36), 45814–45823 (2020)

    Article  Google Scholar 

  19. Saxena, A.; Singh Chauhan, P.: Role of various enzymes for deinking paper: a review. Crit. Rev. Biotechnol. 37(5), 598–612 (2017)

    Article  Google Scholar 

  20. Lee, C.K.; Ibrahim, D.; Omar, I.C.: Enzymatic deinking of various types of waste paper: efficiency and characteristics. Process. Biochem. 48(2), 299–305 (2013)

    Article  Google Scholar 

  21. Maity, C.; Ghosh, K.; Halder, S.K.; Jana, A.; Adak, A.; Mohapatra, P.K.D.; Pati, B.R.; Mondal, K.C.: Xylanase isozymes from the newly isolated Bacillus sp. CKBx1D and optimization of its deinking potentiality. Appl. Biochem. Biotechnol. 167(5), 1208–1219 (2012)

    Article  Google Scholar 

  22. Parte, A.C.: LPSN—–List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int. J. Syst. Evol. Microbiol. 68(6), 1825–1829 (2018)

    Article  Google Scholar 

  23. Jonnadula, R.; Ghadi, S.C.: Purification and characterization of β-agarase from seaweed decomposing bacterium Microbulbifer sp. strain CMC-5. Biotechnol. Bioprocess. Eng. 16(3), 513–519 (2011)

    Article  Google Scholar 

  24. Liu, H.; Zeng, L.; Jin, Y.; Nie, K.; Deng, L.; Wang, F.: Effect of different carbon sources on cellulase production by marine strain Microbulbifer hydrolyticus IRE-31-192. Appl. Biochem. Biotechnol. 188(3), 741–749 (2019)

    Article  Google Scholar 

  25. Lee, H.-J.; Lee, Y.-S.; Choi, Y.-L.: Cloning, purification, and characterization of an organic solvent-tolerant chitinase, MtCh509, from Microbulbifer thermotolerans DAU221. Biotechnol. Biofuels. 11(1), 1–14 (2018)

    Article  Google Scholar 

  26. Ohta, Y.; Hatada, Y.; Nogi, Y.; Miyazaki, M.; Li, Z.; Akita, M.; Hidaka, Y.; Goda, S.; Ito, S.; Horikoshi, K.: Enzymatic properties and nucleotide and amino acid sequences of a thermostable β-agarase from a novel species of deep-sea Microbulbifer. Appl. Microbiol. Biotechnol. 64(4), 505–514 (2004)

    Article  Google Scholar 

  27. Hatada, Y.; Mizuno, M.; Li, Z.; Ohta, Y.: Hyper-production and characterization of the ι-carrageenase useful for ι-carrageenan oligosaccharide production from a deep-sea bacterium, Microbulbifer thermotolerans JAMB-A94T, and insight into the unusual catalytic mechanism. Mar. Biotechnol. 13(3), 411–422 (2011)

    Article  Google Scholar 

  28. Lam, M.Q.; Vodovnik, M.; Zorec, M.; Chen, S.J.; Goh, K.M.; Yahya, A.; Md Salleh, M.; Ibrahim, Z.; Tokiman, L.; McQueen-Mason, S.J.; Bruce, N.C.; Chong, C.S.: Robertkochia solimangrovi sp. nov., isolated from mangrove soil, and emended description of the genus Robertkochia. Int. J. Syst. Evol. Microbiol. 70(3), 1769–1776 (2020)

    Article  Google Scholar 

  29. Lane, D.J.: 16S/23S rRNA sequencing. In: Stackebrandt, E.M.G. (Ed.) Nucleic Acid Techniques in Bacterial Systematics, pp. 125–175. John Wiley and Sons, Chichester (1991)

    Google Scholar 

  30. Lam, M.Q.; Nik Mut, N.N.; Thevarajoo, S.; Chen, S.J.; Selvaratnam, C.; Hussin, H.; Jamaluddin, H.; Chong, C.S.: Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6. 3 Biotech 8(2), 104 (2018)

    Article  Google Scholar 

  31. Wright, E.S.; Yilmaz, L.S.; Noguera, D.R.: DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl. Environ. Microbiol. 78(3), 717 (2012)

    Article  Google Scholar 

  32. Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J.: Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67(5), 1613–1617 (2017)

    Article  Google Scholar 

  33. Kumar, S.; Stecher, G.; Tamura, K.: MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870–1874 (2016)

    Article  Google Scholar 

  34. Saitou, N.; Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4), 406–425 (1987)

    Google Scholar 

  35. Smibert, R.; Krieg, N.: Phenotypic characterization. In: Gerhardt, P.; Murray, R.; Wood, W.; Krieg, N. (Eds.) Methods for General and Molecular Bacteriology, pp. 607–654. American Society for Microbiology, Washington (1994)

    Google Scholar 

  36. Bailey, M.J.; Biely, P.; Poutanen, K.: Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23(3), 257–270 (1992)

    Article  Google Scholar 

  37. Thomas, L.; Ushasree, M.V.; Pandey, A.: An alkali-thermostable xylanase from Bacillus pumilus functionally expressed in Kluyveromyces lactis and evaluation of its deinking efficiency. Bioresour. Technol. 165, 309–313 (2014)

    Article  Google Scholar 

  38. González, J.; Mayer, F.; Moran, M.; Hodson, R.; Whitman, W.: Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int. J. Syst. Evol. Microbiol. 47(2), 369–376 (1997)

    Google Scholar 

  39. Moh, T.H.; Furusawa, G.; Amirul, A.A.-A.: Microbulbifer aggregans sp. Nov., isolated from estuarine sediment from a mangrove forest. Int J Syst Evol Microbiol 67(10), 4089–4094 (2017)

    Article  Google Scholar 

  40. Yoon, J.-H.; Kim, I.-G.; Oh, T.-K.; Park, Y.-H.: Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. Int. J. Syst. Evol. Microbiol. 54(4), 1111–1116 (2004)

    Article  Google Scholar 

  41. Camacho, M.; del Carmen, M.-C.M.; Redondo-Gómez, S.; Rodríguez-Llorente, I.; Schumann, P.; Klenk, H.-P.: Microbulbifer rhizosphaerae sp. nov., isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum. I. Int. J. Syst. Evol. Microbiol. 66(4), 1844–1850 (2016)

    Article  Google Scholar 

  42. Prakash, S.; Veeranagouda, Y.; Kyoung, L.; Sreeramulu, K.: Xylanase production using inexpensive agricultural wastes and its partial characterization from a halophilic Chromohalobacter sp. TPSV 101. World J. Microbiol. Biotechnol. 25(2), 197–204 (2009)

    Article  Google Scholar 

  43. Giridhar, P.V.; Chandra, T.: Production of novel halo-alkali-thermo-stable xylanase by a newly isolated moderately halophilic and alkali-tolerant Gracilibacillus sp. TSCPVG. Process. Biochem. 45(10), 1730–1737 (2010)

    Article  Google Scholar 

  44. Baumgartner, R.A.; Deramo, V.A.; Beaven, M.A.: Constitutive and inducible mechanisms for synthesis and release of cytokines in immune cell lines. J. Immunol. 157(9), 4087–4093 (1996)

    Article  Google Scholar 

  45. Liu, Z.; Zhao, X.; Bai, F.: Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering. Appl. Microbiol. Biotechnol. 97(10), 4361–4368 (2013)

    Article  Google Scholar 

  46. Wang, G.; Wu, J.; Yan, R.; Lin, J.; Ye, X.: A novel multi-domain high molecular, salt-stable alkaline xylanase from Alkalibacterium sp. SL3. Front. Microbiol. 7, 2120 (2017)

    Article  Google Scholar 

  47. Lin, X.; Hetharua, B.; Lin, L.; Xu, H.; Zheng, T.; He, Z.; Tian, Y.: Mangrove sediment microbiome: adaptive microbial assemblages and their routed biogeochemical processes in Yunxiao mangrove national nature reserve, China. Microb. Ecol. 78(1), 57–69 (2019)

    Article  Google Scholar 

  48. Kathiresan, K.: Salt-tolerant microbes in mangroves: ecological role and bioprospecting potential. In: Dagar, J.C.; Yadav, R.K.; Sharma, P.C. (Eds.) Research Developments in Saline Agriculture, pp. 237–255. Springer, Singapore (2019)

    Chapter  Google Scholar 

  49. Qeshmi, F.I.; Homaei, A.; Fernandes, P.; Hemmati, R.; Dijkstra, B.W.; Khajeh, K.: Xylanases from marine microorganisms: a brief overview on scope, sources, features and potential applications. Biochim. Biophys. Acta Proteins Proteom. 140312 (2019)

  50. Lee, H.J.; Kim, I.J.; Kim, J.F.; Choi, I.-G.; Kim, K.H.: An expansin from the marine bacterium Hahella chejuensis acts synergistically with xylanase and enhances xylan hydrolysis. Bioresour. Technol. 149, 516–519 (2013)

    Article  Google Scholar 

  51. Guo, B.; Chen, X.-L.; Sun, C.-Y.; Zhou, B.-C.; Zhang, Y.-Z.: Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-β-1, 4-xylanase from marine Glaciecola mesophila KMM 241. Appl. Microbiol. Biotechnol. 84(6), 1107 (2009)

    Article  Google Scholar 

  52. Cai, Z.-W.; Ge, H.-H.; Yi, Z.-W.; Zeng, R.-Y.; Zhang, G.-Y.: Characterization of a novel psychrophilic and halophilic β-1, 3-xylanase from deep-sea bacterium, Flammeovirga pacifica strain WPAGA1. Int. J. Biol. Macromol. 118, 2176–2184 (2018)

    Article  Google Scholar 

  53. Han, Z.; Shang-guan, F.; Yang, J.: Characterization of a novel cold-active xylanase from Luteimonas species. World J. Microbiol. Biotechnol. 34(8), 123 (2018)

    Article  Google Scholar 

  54. Yu, H.; Zhao, S.; Fan, Y.; Hu, C.; Lu, W.; Guo, L.: Cloning and heterologous expression of a novel halo/alkali-stable multi-domain xylanase (XylM 18) from a marine bacterium Marinimicrobium sp. strain LS-A18. Appl. Microbiol. Biotechnol. 103(21–22), 8899–8909 (2019)

    Article  Google Scholar 

  55. Uday, U.S.P.; Majumdar, R.; Tiwari, O.N.; Mishra, U.; Mondal, A.; Bandyopadhyay, T.K.; Bhunia, B.: Isolation, screening and characterization of a novel extracellular xylanase from Aspergillus niger (KP874102.1) and its application in orange peel hydrolysis. Int. J. Biol. Macromol. 105, 401–409 (2017)

    Article  Google Scholar 

  56. Beg, Q.; Kapoor, M.; Mahajan, L.; Hoondal, G.: Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56(3–4), 326–338 (2001)

    Article  Google Scholar 

  57. Polizeli, M.; Rizzatti, A.; Monti, R.; Terenzi, H.; Jorge, J.A.; Amorim, D.: Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67(5), 577–591 (2005)

    Article  Google Scholar 

  58. Ko, J.K.; Ko, H.; Kim, K.H.; Choi, I.-G.: Characterization of the biochemical properties of recombinant Xyn10C from a marine bacterium, Saccharophagus degradans 2–40. Bioprocess. Biosyst. Eng. 39(4), 677–684 (2016)

    Article  Google Scholar 

  59. Sanjivkumar, M.; Silambarasan, T.; Palavesam, A.; Immanuel, G.: Biosynthesis, purification and characterization of β-1, 4-xylanase from a novel mangrove associated actinobacterium Streptomyces olivaceus (MSU3) and its applications. Protein Exp. Purif. 130, 1–12 (2017)

    Article  Google Scholar 

  60. Liu, X.; Huang, Z.; Zhang, X.; Shao, Z.; Liu, Z.: Cloning, expression and characterization of a novel cold-active and halophilic xylanase from Zunongwangia profunda. Extremophiles 18(2), 441–450 (2014)

    Article  Google Scholar 

  61. Viikari, L.; Alapuranen, M.; Puranen, T.; Vehmaanperä, J.; Siika-Aho, M.: Thermostable enzymes in lignocellulose hydrolysis. In: Olsson, L. (Ed.) Biofuels: Advances in Biochemical Engineering/Biotechnology, Vol. 108, pp. 121–145. Springer, Berlin (2007)

    Chapter  Google Scholar 

  62. Kumar, V.; Marín-Navarro, J.; Shukla, P.: Thermostable microbial xylanases for pulp and paper industries: trends, applications and further perspectives. World J. Microbiol. Biotechnol. 32(2), 34 (2016)

    Article  Google Scholar 

  63. Torres, G.G.; Figueroa-Galvis, I.; Munoz-Garcia, A.; Polania, J.; Vanegas, J.: Potential bacterial bioindicators of urban pollution in mangroves. Environ. Pollut. 255, 113293 (2019)

    Article  Google Scholar 

  64. Bai, W.; Xue, Y.; Zhou, C.; Ma, Y.: Cloning, expression and characterization of a novel salt-tolerant xylanase from Bacillus sp. SN5. Biotechnol. Lett. 34(11), 2093–2099 (2012)

    Article  Google Scholar 

  65. Hung, K.-S.; Liu, S.-M.; Tzou, W.-S.; Lin, F.-P.; Pan, C.-L.; Fang, T.-Y.; Sun, K.-H.; Tang, S.-J.: Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Process. Biochem. 46(6), 1257–1263 (2011)

    Article  Google Scholar 

  66. Palavesam, A.: Investigation on lignocellulosic saccharification and characterization of haloalkaline solvent tolerant endo-1, 4 β-d-xylanase from Halomonas meridiana APCMST-KS4. Biocatal. Agric. Biotechnol. 4(4), 761–766 (2015)

    Article  Google Scholar 

  67. Stepankova, V.; Bidmanova, S.; Koudelakova, T.; Prokop, Z.; Chaloupkova, R.; Damborsky, J.: Strategies for stabilization of enzymes in organic solvents. ACS Catal. 3(12), 2823–2836 (2013)

    Article  Google Scholar 

  68. Kumar, A.; Dhar, K.; Kanwar, S.S.; Arora, P.K.: Lipase catalysis in organic solvents: advantages and applications. Biol. Proced. Online 18(1), 2 (2016)

    Article  Google Scholar 

  69. Alhammad, A.; Adewale, P.; Kuttiraja, M.; Christopher, L.P.: Enhancing enzyme-aided production of fermentable sugars from poplar pulp in the presence of non-ionic surfactants. Bioprocess. Biosyst. Eng. 41(8), 1133–1142 (2018)

    Article  Google Scholar 

  70. Wang, F.; Zhang, X.; Zhang, G.; Chen, J.; Sang, M.; Long, Z.; Wang, B.: Studies on the environmentally friendly deinking process employing biological enzymes and composite surfactant. Cellulose 25(5), 3079–3089 (2018)

    Article  Google Scholar 

  71. Holmberg, K.: Interactions between surfactants and hydrolytic enzymes. Colloids Surf. B Biointerfaces 168, 169–177 (2018)

    Article  Google Scholar 

  72. Kamali, M.; Khodaparast, Z.: Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicol. Environ. Saf. 114, 326–342 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially sponsored by Industry-International Incentive Grant and Newton Fund Impact Scheme (NFIS) 2020-2021 from Universiti Teknologi Malaysia and Malaysian Industry-Government Group for High Technology with project number 02M34 and 536423090 (RADIS cost centre number for NFIS: 4B568), respectively. This work was supported by the Ministry of Higher Education Malaysia under Fundamental Research Grant Scheme (FRGS/1/2019/WAB13/UTM/02/1). This study was also supported by Universiti Teknologi Malaysia under the Post-Doctoral Fellowship Scheme for the Project: “Harnessing Sustainable Development Opportunities from Oil Palm Empty Fruit Bunch as Food for Black Soldier Fly Larvae”, which granted to Ming Quan Lam. The authors also would like to acknowledge Johor National Parks Corporation for sampling permit (CJB G No. 887005) at Tanjung Piai National Park, Johor. Ming Quan Lam is thankful to Khazanah Watan Postgraduate (PhD) scholarship (scholar ID: 40852) and Post-Doctoral Fellowship Scheme from Yayasan Khazanah and Universiti Teknologi Malaysia, respectively. Ming Hui Mah acknowledges National Postgraduate Fund (NPF) from Universiti Teknologi Malaysia.

Funding

This research was financially sponsored by Industry-International Incentive Grant and Newton Fund Impact Scheme (NFIS) 2020–2021 from Universiti Teknologi Malaysia and Malaysian Industry-Government Group for High Technology with project number 02M34 and 536423090 (RADIS cost centre number for NFIS: 4B568), respectively. This work was supported by the Ministry of Higher Education Malaysia under Fundamental Research Grant Scheme (FRGS/1/2019/WAB13/UTM/02/1).

Author information

Authors and Affiliations

Authors

Contributions

Ming Hui Mah performed the experiment, analysed the data, and drafted the manuscript. Ming Quan Lam designed the experiment, assisted in performing the experiment, drafted the manuscript, and provided the expertise. Lili Tokiman, Mohd Farizal Kamaroddin, Zaharah Ibrahim, and Shafinaz Shahir provided the expertise. Chun Shiong Chong conceived the presented idea, designed the experiment, and provided the expertise. All authors read, edited, and approved the final manuscript.

Corresponding author

Correspondence to Chun Shiong Chong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mah, M.H., Lam, M.Q., Tokiman, L. et al. Revealing the Potential of Xylanase from a New Halophilic Microbulbifer sp. CL37 with Paper De-Inking Ability. Arab J Sci Eng 47, 6795–6805 (2022). https://doi.org/10.1007/s13369-021-06400-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06400-1

Keywords

Navigation