Skip to main content
Log in

Xylanase Isozymes from the Newly Isolated Bacillus sp. CKBx1D and Optimization of Its Deinking Potentiality

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Recycling of civic paper waste by enzyme-based technology is nowadays a point of much concern for pollution-less green environment. In this study, the deinking effectiveness of purified xylanase from a newly isolated bacterium was evaluated for recycling of laser jet paper waste. A potent xylanases-producing bacterium from the microbial consortia of termite gut was isolated, which was further identified on the basis of 16S rRNA sequence as Bacillus sp. CKBx1D. In submerged fermentation condition, the isolate produced the highest level of xylanase (480 U/ml) at 36 h of growth. The extracellular xylanase system comprises of three distinct isozymes (est. Mw 35.28, 28.63, 18.94 kDa). The deinking of laser printed paper waste was performed using the purified enzyme mixture. Whole operational parameters were optimized using the Response Surface Methodology; it was found that at pH 6.8 with 47.2 h of continuous shaking at constant temperature of 35 °C, enzymes showed best deinking activity. After enzyme treatment, the physical properties of the pulp like brightness and ERIC (effective residual ink content) values were enhanced, whereas the pulp opacity was more reduced than the control treatment. Hence, the bacterial isolate and its xylanolytic enzyme system could efficiently be used in recycling paper waste as deinking agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Facts about paper and paper waste (2010). Available from: www.id2.ca. Accessed October, 2011.

  2. MacFadden, T., & Vogel, M. P. (1996). Facts about paper. USA: Printers' National Environmental Assistance Center, Montana State University.

    Google Scholar 

  3. Bajpai, P., & Bajpai, P. K. (1998). Deinking with enzyme: a review. TAPPI Journal, 81, 111–117.

    CAS  Google Scholar 

  4. Prasad, D. Y., Heitmann, J. A., & Joyce, T. W. (1993). Enzymatic deinking of colored offset newsprint. Nordic Pulp & Paper Research Journal, 2, 284–286.

    Article  Google Scholar 

  5. Nie, X., Miller, J. D., & Yeboah, Y. D. (1998). The effect of ink types and printing processes on flotation deinking efficiency of wastepaper recycling. Environmental Engineering and Policy, 1, 47–58.

    Article  Google Scholar 

  6. Nie, X., & Miller, J. D. (1997). The effect of ink types and printing process on flotation deinking. TAPPI Proceedings Recycling Symposium, pp. 131–147.

  7. Call, H. P., & Strittmatter, G. (1992). Application of ligninolytic enzymes in the paper and pulp industry–recent results. Papier, 46, 32–37.

    CAS  Google Scholar 

  8. Gübitz, G. M., Mansfield, S. D., Böhm, D., & Saddler, J. N. (1998). Effect of endoglucanases and hemicellulases in magnetic and flotation deinking of xerographic and laser-printed papers. Journal of Biotechnology, 65, 209–215.

    Article  Google Scholar 

  9. Morkbak, A. L., Degn, P., & Zimmermann, W. (1999). Deinking of soybean oil based ink-printed paper with lipases and a neutral surfactant. Journal of Biotechnology, 67, 229–236.

    Article  CAS  Google Scholar 

  10. Lee, C. K., Darah, I., & Ibrahim, C. O. (2007). Enzymatic deinking of laser printed office waste papers: some governing parameters on deinking efficiency. Bioresource Technology, 98, 1684–1689.

    Article  CAS  Google Scholar 

  11. Kim, T. J., Ow, S. S. K., & Eom, T. J. (1991). Enzymatic deinking method of wastepaper. In: Proceedings of TAPPI Pulping Conference, pp. 1023–1031.

  12. Pala, H., Mota, M., & Gama, F. M. (2004). Enzymatic versus chemical deinking of non-impact ink printed paper. Journal of Biotechnology, 108, 79–89.

    Article  CAS  Google Scholar 

  13. Mandal, A., Kar, S., Das Mohapatra, P. K., Maity, C., Pati, B. R., & Mondal, K. C. (2011). Purification and characterization of an endoxylanase from the culture broth of Bacillus cereus BSA1. Applied Biochemistry and Microbiology, 47, 250–255.

    Article  CAS  Google Scholar 

  14. Faik, A. (2010). Xylan Biosynthesis: news from the grass. Plant Physiology, 153, 396–402.

    Article  CAS  Google Scholar 

  15. Ghosh, M., Amitabha, D., Mishra, A. K., & Nanda, G. (1993). Aspergillus sydowwi MG 49 is a strong producer of thermostable xylanolytic enzymes. Enzyme and Microbial Technology, 15, 703–709.

    Article  CAS  Google Scholar 

  16. Gilbert, H. J., & Hazlewood, G. P. (1999). Bacterial cellulase and xylanase. Journal of General Microbiology, 139, 187–194.

    Article  Google Scholar 

  17. Sanghi, A., Garg, N., Kuhar, K., Kuhad, R. C., & Gupta, V. K. (2009). Enhanced production of cellulase-free xylanase by alkalophilic Bacillus subtilis ASH and its application in biobleaching of kraft pulp. BioResources, 4, 1109–1129.

    CAS  Google Scholar 

  18. Dhiman, S. S., Garg, G., Mahajan, R., Garg, N., & Sharma, J. (2009). Single lay out and mixed lay out enzymatic processes for bio-bleaching of kraft pulp. Bioresource Technology, 100, 4736–4741.

    Article  CAS  Google Scholar 

  19. Ninawe, S., Kapoor, M., & Kuhad, R. C. (2007). Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresource Technology, 99, 1252–1258.

    Article  Google Scholar 

  20. Pal, A., & Khanum, F. (2010). Characterizing and improving the thermostability of purified xylanase from Aspergillus niger DFR-5 grown on solid-state-medium. Journal of Biochemical Technology, 2, 203–209.

    CAS  Google Scholar 

  21. Viikari, L., Kantelinen, A., Sundquist, J., & Linko, M. (1994). Xylanases in bleaching: from an idea to the industry. FEMS Microbiology Review, 13, 335–350.

    Article  CAS  Google Scholar 

  22. Blanco, A., Vidal, T., Colom, J. F., & Pastor, J. F. I. (1995). Purification and properties of xylanase A from alkali-tolerant Bacillus sp. Strain BP-23. Applied and Environmental Microbiology, 61, 4468–4470.

    CAS  Google Scholar 

  23. Bajpai, P. (1999). Application of enzymes in the pulp and paper industry. Biotechnology Progress, 15, 147–157.

    Article  CAS  Google Scholar 

  24. Maity, C., Samanta, S., Halder, S. K., Das Mohapatra, P. K., Pati, B. R., Jana, M., & Mondal, K. C. (2011). Isozymes of α-amylases from newly isolated Bacillus thuringiensis CKB19: production from immobilized cells. Biotechnology and Bioprocess Engineering, 16, 312–319.

    Article  CAS  Google Scholar 

  25. Xu, Z., Miao, Y., Chen, J. Y., Jiang, X., Lin, L., & Ouyang, P. (2011). Co-immobilization mechanism of cellulase and xylanase on a reversibly soluble polymer. Applied Biochemistry and Biotechnology, 163, 153–161.

    Article  CAS  Google Scholar 

  26. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  27. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  28. Min-Jen, T., Mee-Nagan, Y., Khanok, R., Khin Lay, K., & Shui-Tein, C. (2002). Purification and characterization of two cellulase free xylanases from an alkaliphilic Bacillus firmus. Enzyme and Microbial Technology, 30, 590–595.

    Article  Google Scholar 

  29. Roe, S. (2000). Protein purification techniques (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  30. Jordan, B. D., & Popson, S. J. (1994). Measuring the concentration of residual ink in recycled newsprint. Journal of Pulp and Paper Science, 20, J161–J167.

    Google Scholar 

  31. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.

    CAS  Google Scholar 

  32. Wenzel, M., Schönig, M., Berchtold, M., Kämpfer, P., & König, H. (2002). Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. Journal of Applied Microbiology, 92, 32–40.

    Article  CAS  Google Scholar 

  33. Konig, H. (2006). Bacillus species in the intestine of termites and other soil invertebrates. Journal of Applied Microbiology, 101, 620–627.

    Article  CAS  Google Scholar 

  34. Nakamura, S., Wakabayashi, K., Nakai, R., Aono, R., & Horikoshi, K. (1993). Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. Strain 41M-1. Applied and Environmental Microbiology, 59, 2311–2316.

    CAS  Google Scholar 

  35. Wong, K. Y., Tan, L. U. L., & Saddler, J. N. (1988). Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiological Reviews, 52, 305–317.

    CAS  Google Scholar 

  36. Breccia, J. D., Sineriz, F., Baigori, M. D., Castro, G. R., & Hatti-Kaul, R. (1998). Purification and characterization of a thermostable xylanase from Bacillus amyloliquefaciens. Enzyme and Microbial Technology, 22, 42–49.

    Article  CAS  Google Scholar 

  37. Akiba, T., & Horikoshi, K. (1988). Xylanases of alkalophilic thermophilic Bacillus. Methods in Enzymology, 160, 655–659.

    Article  CAS  Google Scholar 

  38. Biely, P., Markovik, O., & Mislovicova, D. (1985). Sensitive detection of endo-1,4,-β glucanases and endo-1,4-β-xylanases in gels. Analytical Biochemistry, 144, 147–151.

    Article  CAS  Google Scholar 

  39. Elegir, G., Szakacs, G., & Jeffries, T. W. (1994). Purification, characterization and substrate specificities of multiple xylanases from Streptomyces sp. strain B-12-2. Applied and Environmental Microbiology, 60, 2609–2615.

    CAS  Google Scholar 

  40. Dobozi, M. S., Szakacs, G., & Bruschi, C. V. (1992). Xylanase activity of Phanerchaete Chrysosporium. Applied and Environmental Microbiology, 58, 3466–3471.

    CAS  Google Scholar 

  41. Li, X.-L., & Ljungdahl, L. G. (1994). Cloning, sequencing and regulation of a xylanase gene from the fungus Aureobasidium pullulans Y-2311-1. Applied and Environmental Microbiology, 60, 3160–3166.

    CAS  Google Scholar 

  42. Badhan, A. K., Chadha, B. S., Sonia, K. G., Saini, H. S., & Bhat, M. K. (2004). Functionally diverse multiple xylanases of thermophilic fungus Myceliophthora sp. IMI 387099. Enzyme and Microbial Technology, 35, 460–466.

    Article  CAS  Google Scholar 

  43. Choudhury, B., Aggarwal, P., Gothwal, R. K., Mantri, R., Mohan, M. K., & Ghosh, P. (2006). Biobleaching of nonwoody pulps using xylanase of Bacillus brevis BISR-062. Applied Biochemistry and Biotechnology, 128, 159–169.

    Article  CAS  Google Scholar 

  44. Jeffries, T. W., Klungness, J. H., Sykes, M. S., & Rutledge-Cropsey, K. R. (1994). Comparison of enzyme– enhanced with conventional deinking of xerographic and laser-printed paper. TAPPI Journal, 77, 173–179.

    CAS  Google Scholar 

  45. Yingjuan, F., Zhiyong, S., Bingyun, L., Menghus, Q., Peiji, G., & Yue, Z. (2000). Effect of enzyme pretretments on wheat straw. Fourth International Nonwood Fibre Pulping and Paper making Conference Proceeding (China), 2, 549–553.

  46. Gaosheng, W., Junfang, H., Laisu, X., & Anquan, L. Y. (2000). The mechanism of drainage improvement for pulp with enzyme treatment. Fourth International Nonwood Fibre Pulping and Paper making Conference Proceedings, 2, 417–426.

  47. Box, G., & Behnken, D. (1960). Some new three level designs for the study of quantitative variables. Technometrics, 2, 455–475.

    Google Scholar 

  48. Ravikumar, K., Pakshirajan, K., Swaminathan, T., & Balu, K. (2005). Optimization of batch process parameters using response surface methodology for dye removal by a novel adsorbent. Chemical Engineering Journal, 105, 131–138.

    Article  CAS  Google Scholar 

  49. Pommier, J., Fuentes, J., & Goma, G. (1989). Using enzymes to improve the process and the product quality in the recycled paper industry: Part 1. The basic laboratory work. TAPPI Journal, 72, 187–191.

    CAS  Google Scholar 

  50. Shrinivas, D., Savitha, G., Raviranjan, K., & Naik, G. R. (2010). A highly thermostable alkaline cellulase-free xylanase from thermoalkalophilic Bacillus sp. JB 99 suitable for paper and pulp industry: purification and characterization. Applied Biochemistry and Biotechnology, 162, 2049–2057.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Council of Scientific and Industrial Research (CSIR), Govt. of India, New Delhi for financial assistance to carry out this work. We are also thankful to Nandadulal Bhattacharyya, Principal, Vidyasagar Institute of Health (VIH), Midnapore for the meticulous revision of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keshab C. Mondal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maity, C., Ghosh, K., Halder, S.K. et al. Xylanase Isozymes from the Newly Isolated Bacillus sp. CKBx1D and Optimization of Its Deinking Potentiality. Appl Biochem Biotechnol 167, 1208–1219 (2012). https://doi.org/10.1007/s12010-012-9556-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9556-4

Keywords

Navigation