Skip to main content
Log in

Productivity Evaluation of Refracturing to a Poorly/Damaged Fractured Well in a Tight Reservoir

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

As an important stimulation technology, refracturing is commonly used to enhance oil or gas recovery in tight reservoirs, particularly for poorly/damaged fractured wells in these reservoirs. However, the stimulation effect of refracturing is not clear at present. Accurate evaluation of the effect of refracturing treatment on the productivity of a poorly/damaged fractured well is of great significance to the rapid and efficient development of tight reservoirs. In this study, two semi-analytical models, including an initially fractured well model and a refractured well model, were established to calculate their productivity indices, respectively, for quantitative productivity evaluation. Productivity index ratio, a newly defined parameter reflecting the characteristics of both productivity indices, was calculated to evaluate the refracturing stimulation effect. The comparisons with two classic cases indicated our solutions were exactly consistent with the results in the previous literature and verified the reliability and accuracy of our solutions. Results show that compared with initially fractured well, the productivity of refractured well first rises rapidly and then slows down as principal/reoriented fracture angle or rotation angle increases, but an inverse relationship may occur at low initial fracture conductivity. Meanwhile, the productivity index ratio curves under the same initial fracture conductivity converge into a bunch of curves, first increasing and then slowing down as reorientation fracture conductivity enhances. Overall, refracturing treatment is more effective for fractured wells when initial fracture conductivity becomes lower. Reoriented/principal fracture length ratio has a weak negative correlation with the productivity index ratio, but reorientation fracture number shows a stronger influence on the stimulation than the other factors. Principal/reoriented fracture angle, fracture length ratio, reorientation fracture number and fracture conductivity should be optimized before refracturing to achieve the optimal productivity. Additionally, in a rectangular reservoir, the central refractured well obtains larger productivity than the eccentric refractured well, and hydraulic fractures deploying along the reservoir extension can slightly increase well productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

x :

Distance in the x-axis, m

y :

Distance in the y-axis, m

x e :

Reservoir length in the x-axis, m

y e :

Reservoir length in the y-axis, m

h :

Reservoir thickness, m

L f 1 :

Principal fracture length, m

L f 2, L f 3 :

Reoriented fracture length, m

L R :

Reference length, m

l :

Discrete segment length, m

w f :

Fracture width, m

k :

Permeability in the reservoir, 10−3μm2

k f 1 :

Permeability in the initial fracture, 10−3μm2

k f 2 :

Permeability in the reorientation fracture, 10−3μm2

θ p :

Principal fracture angle, degree

θ r 1, θ r 2 :

Reoriented fracture angle, degree

p i :

Initial reservoir pressure, MPa

p avg :

Average reservoir pressure, MPa

p w :

Wellbore pressure, MPa

φ :

Reservoir porosity, fraction

μ :

Fluid viscosity, mPa s

c t :

Total compressibility, 1/MPa

β :

Reoriented/principal fracture length ratio, fraction

Q :

Wellbore flow rate, m3/d

q fw :

Flow rate of per unit fracture length, m3/d

q f :

Flow rate strength, m2/d

x D :

Dimensionless distance in the x-axis

y D :

Dimensionless distance in the y-axis

x eD :

Dimensionless reservoir length in the x-axis

y eD :

Dimensionless reservoir width in the y-axis

x′ D :

Dimensionless coordinate transformation of xD along reorientation fracture

y′ D :

Dimensionless coordinate transformation of yD along reorientation fracture

p D :

Dimensionless reservoir pressure

p 1 D :

Dimensionless pressure in the initially fractured well model

p 2 D :

Dimensionless pressure in the refractured well model

p 1 D i :

Dimensionless pressure of the ith minute segment caused by the production of the initially fractured well

p 2 D i :

Dimensionless pressure of the ith minute segment caused by the production of the refractured fractured well

p avgD :

Dimensionless average reservoir pressure

p wD :

Dimensionless wellbore pressure

q D :

Dimensionless point source flux

q PfD :

Dimensionless flow rate strength of the initial fracture

q RfD :

Dimensionless flow rate strength of the reorientation fracture

q PDk :

Dimensionless flow flux of the kth minute fracture segment in the initial fracture

q RDm :

Dimensionless flow flux of the mth minute fracture segment in the reorientation fracture

J PD :

Dimensionless productivity index for the initially fractured well

J RD :

Dimensionless productivity index for the refractured well

F D :

Pseudo-steady-state pressure distribution function

F DP :

Pseudo-steady-state pressure distribution function for the initially fractured well

F DR :

Pseudo-steady-state pressure distribution function for the refractured well

R JD :

Productivity index ratio

C fD 1 :

Dimensionless initial fracture conductivity

C fD 2 :

Dimensionless reorientation fracture conductivity

l D :

Dimensionless discrete segment length

t D :

Dimensionless time

χ D :

Dimensionless integral variable

N PF :

Total discrete segments of the initial fracture

N RF :

Total discrete segments of reorientation fracture

l D i :

Dimensionless length of the ith discrete segment, i = 1, 2, 3…

sinh:

Hyperbolic sine function

cosh:

Hyperbolic cosine function

References

  1. Wang, L.; Wang, X.; Ding, X.; et al.: Rate decline curves analysis of a vertical fractured well with fracture face damage. J. Energy Resour. Technol. 134, 032803 (2012). https://doi.org/10.1115/1.4006865

    Article  Google Scholar 

  2. Wright, C.A.; Conant, R.A.; Stewart, D.W.; et al.: Reorientation of propped refracture treatments. In: SPE/ISRM Rock Mechanics in Petroleum Engineering Conference. Society of Petroleum Engineers (1994)

  3. Benedict, D.S.; Miskimins, J.L.: Analysis of reserve recovery potential from hydraulic fracture reorientation in tight gas Lenticular reservoir. In: SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers (2009)

  4. Roussel, N.P.; Sharma, M.M.: Role of stress reorientation in the success of refracture treatments in tight gas sands. SPE Prod. Oper. 27(04), 346–355 (2012)

    Google Scholar 

  5. Siebrits, E.; Elbel, J.L.; Detournay, E.; et al.: Parameters affecting azimuth and length of a secondary fracture during a refracture treatment. In: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (1998)

  6. Siebrits, E.; Elbel, J.L.; Hoover, R.S.; et al.: Refracture reorientation enhances gas production in Barnett shale tight gas wells. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2000)

  7. Teng, B.L.; Li, H.: A semianalytical model for evaluating the performance of a refractured vertical well with an orthogonal refracture. SPE J. 24(02), 1–21 (2019)

    Google Scholar 

  8. Prats, M.: Effect of vertical fractures on reservoir behavior-incompressible fluid case. SPE J. 1(02), 105–108 (1961)

    Google Scholar 

  9. Raghavan, R.; Joshi, S.D.: Productivity of multiple drainholes or fractured horizontal wells. SPE Form. Eval. 8(01), 11–16 (1993)

    Article  Google Scholar 

  10. Raymond, L.R.; Binder, G.G., Jr.: Productivity of wells in vertically fractured, damaged formations. J. Pet. Technol. 19(01), 120–130 (1967)

    Article  Google Scholar 

  11. Satman, A.: Decline curve analysis for naturally fractured reservoirs: a comparison of models. Society of Petroleum Engineers. SPE-14473-MS (1986)

  12. Valko, P.P.; Economides, M.J.: Heavy crude production from shallow reservoirs: long horizontal wells versus horizontal fractures. In: SPE International Conference on Horizontal Well Technology. Society of Petroleum Engineers (1998)

  13. Daal, J.A.; Economides, M.J.: Optimization of hydraulically fractured wells in irregularly shaped drainage areas. In: SPE International Symposium and Exhibition on Formation. Society of Petroleum Engineers (2006)

  14. Elbel, J.L.; Mack, M.G.: Refracturing: observations and theories. In: SPE Production Operations Symposium. Society of Petroleum Engineers (1993)

  15. Lu, J.: Productivity equations for oil wells in anisotropic reservoirs. Ph.D. Thesis, The University of Oklahoma, Norman, OK, USA (2008)

  16. Romero, D.J.; Valko, P.P.; Economides, M.J.: The optimization of the productivity index and the fracture geometry of a stimulated well with fracture face and choke skins. In: International Symposium and Exhibition on Reservoir Damage Control. Society of Petroleum Engineers (2002)

  17. Luo, W.; Wang, X.; Feng, Y., et al.: Productivity analysis for a vertically fractured well under non-Darcy flow condition. J. Pet. Sci. Eng. 146, 714–725 (2016)

    Article  Google Scholar 

  18. Hagoort, J.: The productivity of a well with a vertical infinite-conductivity fracture in a rectangular closed reservoir. SPE J. 14(04), 715–720 (2009)

    Article  Google Scholar 

  19. Luo, W.; Wang, X.; Tang, C., et al.: Productivity of multiple fractures in a closed rectangular reservoir. J. Pet. Sci. Eng. 157, 232–247 (2017)

    Article  Google Scholar 

  20. Kokurina, V.V.; Kremenetskiy, M.I.; Krichevskiy, V.M.: Control of the efficiency of repeated hydraulic fracturing basing on the results of hydrodynamic surveys. Karotazhnik 5(5227), 76–99 (2013)

    Google Scholar 

  21. Asalkhuzina, G.F.; Davletbaev, A.Ya.; Fedorov, A.I.; et al.: Identification of refracturing reorientation using decline-analysis and geomechanical simulator. In: SPE Russian Petroleum Technology Conference. Society of Petroleum Engineers (2017)

  22. Wu, S.; Xing, G.; Cui, Y.; et al.: A semi-analytical model for pressure transient analysis of hydraulic reorientation fracture in an anisotropic reservoir. J. Pet. Sci. Eng. 179, 228–243 (2019)

    Article  Google Scholar 

  23. Ozkan, E.: Performance of horizontal wells. Ph.D. Thesis, Tulsa University, Tulsa, OK, USA (1988)

  24. Xing, G.Q.; Wu, S.H.; Wang, J.H., et al.: Pressure transient performance for a horizontal well intercepted by multiple reorientation fractures in a tight reservoir. Energies 12(4232), 1–23 (2019)

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Program No. 52004038), the CNPC Innovation Foundation (Program No. 2020D-5007-0201), the Natural Science Basic Research Program of Shaanxi (Program No. 2021JQ-596) and the National Science and Technology Major Project of China (Program No. 2016ZX05046-003).

Author information

Authors and Affiliations

Authors

Contributions

GX proposed the idea, established the mathematical model and wrote the main manuscript. MW made substantial contributions to the modeling and conceptualization of the work. YZ, HS, WG, TL, RL and XD contributed to the programming, result analysis and discussion.

Corresponding author

Correspondence to Mingxian Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix: Fast Algorithm of Eq. 11

Appendix: Fast Algorithm of Eq. 11

In order to get the rapid speed of computation, Eq. 11 needs further treatment to obtain its fast algorithm.

  1. (1)

    When \(y_{{{\mathrm{D}}i}} - y_{{\mathrm{D}}} - \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} \ge 0\), Eq. 11 can be rewritten as:

    $$\begin{aligned} & F_{{\mathrm{D}}} \left( {x_{{\mathrm{D}}} ,y_{{\mathrm{D}}} ,x_{{{\mathrm{D}}i}} ,y_{{{\mathrm{D}}i}} } \right) = \frac{\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {\frac{2}{3}y_{{{\mathrm{eD}}}} - 2y_{{{\mathrm{D}}i}} + \frac{{\left( {y_{{\mathrm{D}}}^{2} + y_{{{\mathrm{D}}i}}^{2} } \right)}}{{y_{{{\mathrm{eD}}}} }} + \frac{{\Delta^{2} l_{{{\mathrm{D}}i}} \sin^{2} \theta_{i} }}{{12y_{{{\mathrm{eD}}}} }}} \right] + \frac{{2x_{{{\mathrm{eD}}}} }}{{\pi \Delta l_{{{\mathrm{D}}i}} }}\sum\limits_{n = 1}^{\infty } {\frac{{\cos \left( {\frac{{n\pi x_{{\mathrm{D}}} }}{{x_{{{\mathrm{eD}}}} }}} \right)}}{{n^{2} \sinh \frac{{n\pi y_{{{\mathrm{eD}}}} }}{{x_{{{\mathrm{eD}}}} }}}}} \\ & \quad \cdot \left[ \begin{gathered} \cos \theta_{i} \left[ {\cosh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{\mathrm{D}}} + y_{{{\mathrm{D}}i}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right]{ + }\cosh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{{\mathrm{D}}i}} - y_{{\mathrm{D}}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right]} \right]\sin \frac{{n\pi \left( {x_{{{\mathrm{D}}i}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\cos \theta_{i} } \right)}}{{{\mathrm{x}}_{{{\mathrm{eD}}}} }} \hfill \\ - \cos \theta_{i} \left[ {\cosh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{\mathrm{D}}} + y_{{{\mathrm{D}}i}} - \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right]{ + }\cosh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{{\mathrm{D}}i}} - y_{{\mathrm{D}}} - \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right]} \right]\sin \frac{{n\pi \left( {x_{{{\mathrm{D}}i}} - \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\cos \theta_{i} } \right)}}{{x_{{{\mathrm{eD}}}} }} \hfill \\ {\mathrm{ + sin}}\theta_{i} \left[ {\sinh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{\mathrm{D}}} + y_{{{\mathrm{D}}i}} - \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right]{ + }\sinh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{{\mathrm{D}}i}} - y_{{\mathrm{D}}} - \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right]} \right]\cos \frac{{n\pi \left( {x_{{{\mathrm{D}}i}} - \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\cos \theta_{i} } \right)}}{{x_{{{\mathrm{eD}}}} }} \hfill \\ - {\mathrm{sin}}\theta_{i} \left[ {\sinh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{\mathrm{D}}} + y_{{{\mathrm{D}}i}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right]{ + }\sinh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{{\mathrm{D}}i}} - y_{{\mathrm{D}}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right]} \right]\cos \frac{{n\pi \left( {x_{{{\mathrm{D}}i}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\cos \theta_{i} } \right)}}{{x_{{{\mathrm{eD}}}} }} \hfill \\ \end{gathered} \right] \\ \end{aligned}$$
    (A-1)
  2. (2)

    When \(y_{{{\mathrm{D}}i}} - y_{{\mathrm{D}}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} \le 0\), Eq. 11 can be rewritten as:

    $$\begin{aligned} & F_{{\mathrm{D}}} \left( {x_{{\mathrm{D}}} ,y_{{\mathrm{D}}} ,x_{{{\mathrm{D}}i}} ,y_{{{\mathrm{D}}i}} } \right) = \frac{\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {\frac{{2y_{{{\mathrm{eD}}}} }}{3} - 2y_{{\mathrm{D}}} + \frac{{\left( {y_{{\mathrm{D}}}^{2} + y_{{{\mathrm{D}}i}}^{2} } \right)}}{{y_{{{\mathrm{eD}}}} }} + \frac{{\Delta l_{{{\mathrm{D}}i}}^{2} \sin^{2} \theta_{i} }}{{12y_{{{\mathrm{eD}}}} }}} \right] + \frac{{2x_{{{\mathrm{eD}}}} }}{{\Delta l_{{{\mathrm{D}}i}} \pi }}\sum\limits_{n = 1}^{\infty } {\frac{{\cos \left( {\frac{{n\pi x_{{\mathrm{D}}} }}{{x_{{{\mathrm{eD}}}} }}} \right)}}{{n^{2} \sinh \frac{{n\pi y_{{{\mathrm{eD}}}} }}{{x_{{{\mathrm{eD}}}} }}}}} \\ & \quad \cdot \left[ \begin{gathered} \cos \theta_{i} \left[ {\cosh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{\mathrm{D}}} + y_{{{\mathrm{D}}i}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right] + \cosh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{\mathrm{D}}} - y_{{{\mathrm{D}}i}} - \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right]} \right]\sin \frac{{n\pi \left( {x_{{{\mathrm{D}}i}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\cos \theta_{i} } \right)}}{{x_{{{\mathrm{eD}}}} }} \hfill \\ - \cos \theta_{i} \left[ {\cosh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{\mathrm{D}}} + y_{{{\mathrm{D}}i}} - \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right] + \cosh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{\mathrm{D}}} - y_{{{\mathrm{D}}i}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right]} \right]\sin \frac{{n\pi \left( {x_{{{\mathrm{D}}i}} - \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\cos \theta_{i} } \right)}}{{x_{{{\mathrm{eD}}}} }} \hfill \\ {\mathrm{ + sin}}\theta_{i} \left[ {\sinh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{\mathrm{D}}} - y_{{{\mathrm{D}}i}} - \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right] - \sinh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{\mathrm{D}}} + y_{{{\mathrm{D}}i}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right]} \right]\cos \frac{{n\pi \left( {x_{{{\mathrm{D}}i}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\cos \theta_{i} } \right)}}{{x_{{{\mathrm{eD}}}} }} \hfill \\ + {\mathrm{sin}}\theta_{i} \left[ {\sinh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{\mathrm{D}}} + y_{{{\mathrm{D}}i}} - \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right] - \sinh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{\mathrm{D}}} - y_{{{\mathrm{D}}i}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right]} \right]\cos \frac{{n\pi \left( {x_{{{\mathrm{D}}i}} - \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\cos \theta_{i} } \right)}}{{x_{{{\mathrm{eD}}}} }} \hfill \\ \end{gathered} \right] \\ \end{aligned}$$
    (A-2)
  3. (3)

    When \(y_{{{\mathrm{D}}i}} - y_{{\mathrm{D}}} - \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} < 0 < y_{{{\mathrm{D}}i}} - y_{{\mathrm{D}}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i}\), Eq. 11 can be rewritten as:

    $$\begin{aligned} & F_{{\mathrm{D}}} \left( {x_{{\mathrm{D}}} ,y_{{\mathrm{D}}} ,x_{{{\mathrm{D}}i}} ,y_{{{\mathrm{D}}i}} } \right) = \frac{\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {\frac{{2y_{{{\mathrm{eD}}}} }}{3} - \left( {y_{{\mathrm{D}}} + y_{{{\mathrm{D}}i}} } \right) + \frac{{\left( {y_{{\mathrm{D}}}^{2} + y_{{{\mathrm{D}}i}}^{2} } \right)}}{{y_{{{\mathrm{eD}}}} }} + \frac{{\Delta l_{{{\mathrm{D}}i}}^{2} \sin^{2} \theta_{i} }}{{12y_{{{\mathrm{eD}}}} }} - \frac{{\left( {y_{{{\mathrm{D}}i}} - y_{{\mathrm{D}}} } \right)^{2} }}{{\Delta l_{{{\mathrm{D}}i}} \sin \theta_{i} }} - \frac{{\Delta l_{{{\mathrm{D}}i}} \sin \theta_{i} }}{4}} \right] + \frac{{2x_{{{\mathrm{eD}}}} }}{{\Delta l_{{{\mathrm{D}}i}} \pi }}\sum\limits_{n = 1}^{\infty } {\frac{{\cos \left( {\frac{{n\pi x_{{\mathrm{D}}} }}{{x_{{{\mathrm{eD}}}} }}} \right)}}{{n^{2} \sinh \frac{{n\pi y_{{{\mathrm{eD}}}} }}{{x_{{{\mathrm{eD}}}} }}}}} \\ & \quad \cdot \left[ \begin{gathered} \cos \theta_{i} \left[ {\cosh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{\mathrm{D}}} + y_{{{\mathrm{D}}i}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right] + \cosh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{{\mathrm{D}}i}} - y_{{\mathrm{D}}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right]} \right]\sin \frac{{n\pi \left( {x_{{{\mathrm{D}}i}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\cos \theta_{i} } \right)}}{{x_{eD} }} \hfill \\ - \cos \theta_{i} \left[ {\cosh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{\mathrm{D}}} + y_{{{\mathrm{D}}i}} - \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right] + \cosh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{\mathrm{D}}} - y_{{{\mathrm{D}}i}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right]} \right]\sin \frac{{n\pi \left( {x_{{{\mathrm{D}}i}} - \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\cos \theta_{i} } \right)}}{{x_{eD} }} \hfill \\ - \sin \theta_{i} \left[ {\sinh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{{\mathrm{D}}i}} - y_{{\mathrm{D}}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right] + \sinh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{\mathrm{D}}} + y_{{{\mathrm{D}}i}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right]} \right]\cos \frac{{n\pi \left( {x_{{{\mathrm{D}}i}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\cos \theta_{i} } \right)}}{{x_{{{\mathrm{eD}}}} }} \hfill \\ - \sin \theta_{i} \left[ {\sinh \frac{n\pi }{{x_{{{\mathrm{eD}}}} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{\mathrm{D}}} - y_{{{\mathrm{D}}i}} + \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right] - \sinh \frac{n\pi }{{x_{eD} }}\left[ {y_{{{\mathrm{eD}}}} - \left( {y_{{\mathrm{D}}} + y_{{{\mathrm{D}}i}} - \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\sin \theta_{i} } \right)} \right]} \right]\cos \frac{{n\pi \left( {x_{{{\mathrm{D}}i}} - \frac{{\Delta l_{{{\mathrm{D}}i}} }}{2}\cos \theta_{i} } \right)}}{{{\mathrm{x}}_{{{\mathrm{eD}}}} }} \hfill \\ \end{gathered} \right] + \frac{{2\pi x_{{{\mathrm{eD}}}} \sin \theta_{i} }}{{\Delta l_{{{\mathrm{D}}i}} }} \\ & \quad \cdot \left[ {\frac{1}{3} - \frac{{\left[ {\left| {x_{{{\mathrm{D}}i}} + x_{{\mathrm{D}}} + \left( {y_{{\mathrm{D}}} - y_{{{\mathrm{D}}i}} } \right)\cot \theta_{i} } \right| + \left| {x_{{{\mathrm{D}}i}} - x_{{\mathrm{D}}} + \left( {y_{{\mathrm{D}}} - y_{{{\mathrm{D}}i}} } \right)\cot \theta_{i} } \right|} \right]}}{{2x_{{{\mathrm{eD}}}} }} + \frac{{\left[ {\left( {x_{{{\mathrm{D}}i}} + x_{{\mathrm{D}}} + \left( {y_{{\mathrm{D}}} - y_{{{\mathrm{D}}i}} } \right)\cot \theta_{i} } \right)} \right]^{2} + \left[ {\left( {x_{{{\mathrm{D}}i}} - x_{{\mathrm{D}}} + \left( {y_{{\mathrm{D}}} - y_{{{\mathrm{D}}i}} } \right)\cot \theta_{i} } \right)} \right]^{2} }}{{4x_{{{\mathrm{eD}}}}^{2} }}} \right] \\ \end{aligned}$$
    (A-3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, G., Wang, M., Zhang, Y. et al. Productivity Evaluation of Refracturing to a Poorly/Damaged Fractured Well in a Tight Reservoir. Arab J Sci Eng 47, 11361–11384 (2022). https://doi.org/10.1007/s13369-021-06056-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06056-x

Keywords

Navigation