Skip to main content
Log in

Pulsed Discharge Plasma over the Surface of an Aqueous Solution to Induce Lignin Decomposition

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, non-equilibrium atmospheric-pressure plasma was introduced over an aqueous solution as a medium to depolymerise lignin employing an applied voltage of 10 kV and a frequency of 10 kHz. As a starting material, lignin was extracted from Japanese cedar wood flour utilising a deep eutectic solvent (DES) at 50–120 °C. The Fourier-transform infrared (FT–IR) spectra indicated that lignin was extracted from the Japanese cedar wood flour in this temperature range. Additionally, the ultraviolet–visible (UV–Vis) spectra of the liquid fraction of the products at 280 nm revealed the high lignin content of the extracts. Gel permeation chromatography (GPC) revealed that the average molecular weight of the lignin was 400–700 Da. Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) illustrated that the prolonged discharge plasma treatment concurrently promoted the further depolymerisation reaction and repolymerisation of the lignin-derived compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mori, T.; Tsuboi, Y.; Ishida, N.; Nishikubo, N.; Demura, T.; Kikuchi, J.: Multidimensional high-resolution magic angle spinning and solution-state nmr characterization of 13C-labeled plant metabolites and lignocellulose. Sci. Rep. 5, 11848 (2015)

    Article  Google Scholar 

  2. Sankaran, R.; Parra Cruz, R.A.P.; Pakalapati, H.; Show, P.L.; Ling, T.C.; Chen, W.H.; Tao, Y.: Recent advances in the pretreatment of microalgal and lignocellulosic biomass: a comprehensive review. Bioresour Technol 298, 122476 (2020)

    Article  Google Scholar 

  3. Chen, H.; Liu, J.; Chang, X.; Chen, D.; Xue, Y.; Liu, P.; Lin, H.; Han, S.: A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process. Technol. 160, 196–206 (2017)

    Article  Google Scholar 

  4. Tribot, A.; Amer, G.; Abdou Alio, M.A.; de Baynast, H.; Delattre, C.; Pons, A.; Mathias, J.D.; Callois, J.M.; Vial, C.; Michaud, P.; Dussap, C.G.: Wood-lignin: supply, extraction processes and use as bio-based material. Eur. Polym. J. 112, 228–240 (2019)

    Article  Google Scholar 

  5. Berglund, J.; Mikkelsen, D.; Flanagan, B.M.; Dhital, S.; Gaunitz, S.; Henriksson, G.; Lindström, M.E.; Yakubov, G.E.; Gidley, M.J.; Vilaplana, F.: Wood hemicelluloses exert distinct biomechanical contributions to cellulose fibrillar networks. Nat. Commun. 11(1), 4692 (2020)

    Article  Google Scholar 

  6. Ponnusamy, V.K.; Nguyen, D.D.; Dharmaraja, J.; Shobana, S.; Banu, J.R.; Saratale, R.G.; Chang, S.W.; Kumar, G.: A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour. Technol. 271, 462–472 (2019)

    Article  Google Scholar 

  7. Sharma, S.; Kumar, A.: Lignin: Biosynthesis and transformation for industrial applications. Springer, Switzerland (2020)

    Book  Google Scholar 

  8. Chen, Z.; Ragauskas, A.; Wan, C.: Lignin extraction and upgrading using deep eutectic solvents. Ind. Crops Prod. 147, 112241 (2020)

    Article  Google Scholar 

  9. Wang, S.; Li, H.; Xiao, L.P.; Song, G.: Unraveling the structural transformation of wood lignin during deep eutectic solvent treatment. Front. Energy Res. 8, 48 (2020)

    Article  Google Scholar 

  10. Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; Langan, P.; Naskar, A.K.; Saddler, J.N.; Tschaplinski, T.J.; Tuskan, G.A.; Wyman, C.E.: Lignin valorization: Improving lignin processing in the biorefinery. Science 344(6185), 1246843 (2014)

    Article  Google Scholar 

  11. Alvarez-Vasco, C.; Ma, R.; Quintero, M.; Guo, M.; Geleynse, S.; Ramasamy, K.K.; Wolcott, M.; Zhang, X.: Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): a source of lignin for valorization. Green Chem. 18(19), 5133–5141 (2016)

    Article  Google Scholar 

  12. Sun, Z.; Fridrich, B.; de Santi, A.; Elangovan, S.; Barta, K.: Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118(2), 614–678 (2018)

    Article  Google Scholar 

  13. Song, Y.; Chandra, R.P.; Zhang, X.; Tan, T.; Saddler, J.N.: Comparing a deep eutectic solvent (DES) to a hydrotrope for their ability to enhance the fractionation and enzymatic hydrolysis of willow and corn stover. Sustain. Energy Fuels 3(5), 1329–1337 (2019)

    Article  Google Scholar 

  14. Wu, Y.; Qian, Y.; Lou, H.; Yang, D.; Qiu, X.: Enhancing the broad-spectrum adsorption of lignin through methoxyl activation, grafting modification, and reverse self-assembly. ACS Sustain. Chem. Eng. 7(19), 15966–15973 (2019)

    Article  Google Scholar 

  15. Zhang, Y.; Ni, S.; Wang, X.; Zhang, W.; Lagerquist, L.; Qin, M.; Willför, S.; Xu, C.; Fatehi, P.: Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles. Chem. Eng. J. 372, 82–91 (2019)

    Article  Google Scholar 

  16. Mbous, Y.P.; Hayyan, M.; Hayyan, A.; Wong, W.F.; Hashim, M.A.; Looi, C.Y.: Applications of deep eutectic solvents in biotechnology and bioengineering promises and challenges. Biotechnol. Adv. 35(2), 105–134 (2017)

    Article  Google Scholar 

  17. Jiang, Y.; Loos, K.: Enzymatic synthesis of biobased polyesters and polyamides. Polymers 8(7), 243 (2016)

    Article  Google Scholar 

  18. Wendisch, V.F.; Kim, Y.; Lee, J.H.: Chemicals from lignin: Recent depolymerization techniques and upgrading extended pathways. Curr. Opin. Green Sustain. Chem. 14, 33–39 (2018)

    Article  Google Scholar 

  19. Chio, C.; Sain, M.; Qin, W.: Lignin utilization: A review of lignin depolymerization from various aspects. Renew. Sustain. Energy Rev. 107, 232–249 (2019)

    Article  Google Scholar 

  20. Yamada, M.; Takahashi, S.; Takada, N.; Kanda, H.; Goto, M.: Synthesis of silver nanoparticles by atmospheric-pressure pulsed discharge plasma in a slug flow system. Jpn. J. Appl. Phys. 58(1), 016001 (2018)

    Article  Google Scholar 

  21. Hayashi, Y.; Diono, W.; Takada, N.; Kanda, H.; Goto, M.: Glycine oligomerization by pulsed discharge plasma over aqueous solution under atmospheric pressure. ChemEngineering 2(2), 17 (2018)

    Article  Google Scholar 

  22. Panorel, I.; Kaijanen, L.; Kornev, I.; Preis, S.; Louhi-Kultanen, M.; Sirén, H.: Pulsed corona discharge oxidation of aqueous lignin: Decomposition and aldehydes formation. Environ. Technol. 35(1–4), 171–176 (2014)

    Article  Google Scholar 

  23. Kline, L.M.; Hayes, D.G.; Womac, A.R.; Labbe, N.: Simplified determination of lignin content in hard and soft woods via UV-spectrophotometric analysis of biomass dissolved in ionic liquids. BioResources 5(3), 1366–1383 (2010)

    Google Scholar 

  24. Faruk, O.; Sain, M.: Lignin in polymer composites, 1st edn. Elsevier Inc., Oxford (2016)

    Google Scholar 

  25. Yaddanapudi, H.S.; Hickerson, N.; Saini, S.; Tiwari, A.: Fabrication and characterization of transparent wood for next generation smart building applications. Vacuum 146, 649–654 (2017)

    Article  Google Scholar 

  26. Frey, M.; Widner, D.; Segmehl, J.S.; Casdorff, K.; Keplinger, T.; Burgert, I.: Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering. ACS Appl. Mater. Interfaces 10(5), 5030–5037 (2018)

    Article  Google Scholar 

  27. Li, L.; Yu, L.; Wu, Z.; Hu, Y.: Delignification of poplar wood with lactic acid-based deep eutectic solvents. Wood Res. 64(3), 499–514 (2019)

    Google Scholar 

  28. Lin, S.Y.; Dence, C.W.: Methods in lignin chemistry. Springer, Berlin (1992)

    Book  Google Scholar 

  29. Nzihou, A.: Handbook on characterization of biomass, biowaste and related by-products. Springer, Switzerland (2020)

    Book  Google Scholar 

  30. Zhang, B.; Liu, Y.; Ren, M.; Li, W.; Zhang, X.; Vajtai, R.; Ajayan, P.M.; Tour, J.M.; Wang, L.: Sustainable synthesis of bright green fluorescent nitrogen-doped carbon quantum dots from alkali lignin. Chemsuschem 12(18), 4202–4210 (2019)

    Article  Google Scholar 

  31. Bergs, M.; Do, X.T.; Rumpf, J.; Kusch, P.; Monakhova, Y.; Konow, C.; Völkering, G.; Pude, R.; Schulze, M.: Comparing chemical composition and lignin structure of Miscanthus x giganteus and Miscanthus nagara harvested in autumn and spring and separated into stems and leaves. RSC Adv. 10(18), 10740–10751 (2020)

    Article  Google Scholar 

  32. Lupoi, J.S.; Singh, S.; Parthasarathi, R.; Simmons, B.A.; Henry, R.J.: Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew. Sustain. Energ. Rev. 49, 871–906 (2015)

    Article  Google Scholar 

  33. Van Erven, G.; de Visser, R.; Merkx, D.W.H.; Strolenberg, W.; de Gijsel, P.; Gruppen, H.; Kabel, M.A.: Quantification of lignin and its structural features in plant biomass using 13C lignin as internal standard for pyrolysis-GC-SIM-MS. Anal. Chem. 89(20), 10907–10916 (2017)

    Article  Google Scholar 

  34. Jiang, J.; Carrillo-Enríquez, N.C.; Oguzlu, H.; Han, X.; Bi, R.; Saddler, J.N.; Sun, R.C.; Jiang, F.: Acidic deep eutectic solvent assisted isolation of lignin containing nanocellulose from thermomechanical pulp. Carbohydr Polym 247, 116727 (2020)

    Article  Google Scholar 

  35. Satlewal, A.; Agrawal, R.; Bhagia, S.; Sangoro, J.; Ragauskas, A.J.: Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities. Biotechnol. Adv. 36(8), 2032–2050 (2018)

    Article  Google Scholar 

  36. Zhang, C.W.; Xia, S.Q.; Ma, P.S.: Facile pretreatment of lignocellulosic biomass using deep eutectic solvents. Bioresour. Technol. 219, 1–5 (2016)

    Article  Google Scholar 

  37. Das, L.; Li, M.; Stevens, J.; Li, W.; Pu, Y.; Ragauskas, A.J.; Shi, J.: Characterization and catalytic transfer hydrogenolysis of deep eutectic solvent extracted sorghum lignin to phenolic compounds. ACS Sustain Chem. Eng. 6(8), 10408–10420 (2018)

    Article  Google Scholar 

  38. Kim, K.H.; Dutta, T.; Sun, J.; Simmons, B.; Singh, S.: Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chem. 20(4), 809–815 (2018)

    Article  Google Scholar 

  39. Vigier, K.D.O.; Chatel, G.; Jérôme, F.: Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations. ChemCatChem 7(8), 1250–1260 (2015)

    Article  Google Scholar 

  40. Wyman, C.E.: Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley, United Kingdom (2013)

    Book  Google Scholar 

  41. Locke, B.R.; Sato, M.; Sunka, P.; Hoffmann, M.R.; Chang, J.-S.: Electrohydraulic discharge and nonthermal plasma for water treatment. Ind. Eng. Chem. Res. 45(3), 882–905 (2006)

    Article  Google Scholar 

  42. Gorbanev, Y.; O’Connell, D.; Chechik, V.: Non-thermal plasma in contact with water: the origin of species. Chemistry 22(10), 3496–3505 (2016)

    Article  Google Scholar 

  43. Patil, S.V.; Argyropoulos, D.S.: Stable organic radicals in lignin: a review. Chemsuschem 10(17), 3284–3303 (2017)

    Article  Google Scholar 

  44. Akpan, E.; Adeosun, S.O.: Sustainable lignin for carbon fibers: principles, techniques, and applications. Springer, Switzerland (2019)

    Book  Google Scholar 

  45. Wright, A.; Bandulasena, H.; Ibenegbu, C.; Leak, D.; Holmes, T.; Zimmerman, W.; Shaw, A.; Iza, F.: Dielectric barrier discharge plasma microbubble reactor for pretreatment of lignocellulosic biomass. AIChE J. 64(11), 3803–3816 (2018)

    Article  Google Scholar 

  46. Kleen, M.: Surface lignin and extractives on hardwood RDH kraft pulp chemically characterized by ToF-SIMS. Holzforschung 59(5), 481–487 (2005)

    Article  Google Scholar 

  47. Sanz, M.; de Simón, B.F.; Cadahía, E.; Esteruelas, E.; Muñoz, A.M.; Hernández, T.; Estrella, I.; Pinto, E.: LC-DAD/ESI-MS/MS study of phenolic compounds in ash (Fraxinus excelsior L. and F. americana L.) heartwood Effect of toasting intensity at cooperage. J. Mass Spectrom. 47(7), 905–918 (2012)

    Article  Google Scholar 

  48. Tokareva, E.N.; Pranovich, A.V.; Holmbom, B.R.: Characteristic fragment ions from lignin and polysaccharides in ToF–SIMS. Wood Sci. Technol. 45(4), 767–785 (2011)

    Article  Google Scholar 

  49. Beelders, T.; de Beer, D.; Stander, M.A.; Joubert, E.: Comprehensive phenolic profiling of Cyclopia genistoides (L) Vent by LC-DAD-MS and -MS/MS reveals novel xanthone and benzophenone constituents. Molecules 19(8), 11760–11790 (2014)

    Article  Google Scholar 

  50. Siso-Terraza, P.; Luis-Villarroya, A.; Fourcroy, P.; Briat, J.F.; Abadía, A.; Gaymard, F.; Abadía, J.; Álvarez-Fernandez, A.: Accumulation and secretion of coumarinolignans and other coumarins in Arabidopsis thaliana roots in response to iron deficiency at high pH. Front. Plant Sci. 7, 1711 (2016)

    Article  Google Scholar 

  51. Kim, K.H.; Kim, C.S.: Recent efforts to prevent undesirable reactions from fractionation to depolymerization of lignin: toward maximizing the value from lignin. Front. Energy Res. 6, 92 (2018)

    Article  Google Scholar 

  52. Brown, R.C.; Wang, K.: Fast pyrolysis of biomass: Advances in science and technology Royal Society of Chemistry. CPI Group Ltd, Croydon (2017)

    Book  Google Scholar 

  53. Ito, S.; Sakai, K.; Gamaleev, V.; Ito, M.; Hori, M.; Kato, M.; Shimizu, M.: Oxygen radical based on non-thermal atmospheric pressure plasma alleviates lignin-derived phenolic toxicity in yeast. Biotechnol. Biofuels 13(1), 18 (2020)

    Article  Google Scholar 

  54. Sun, X.; Sun, Z.; Xin, Y.; Sun, B.; Lu, X.: Plasma-catalyzed liquefaction of wood-based biomass. BioRes. 15(3), 6095–6109 (2020)

    Article  Google Scholar 

  55. Shih, K.Y.; Locke, B.R.: Chemical and physical characteristics of pulsed electrical discharge within gas bubbles in aqueous solutions. Plasma Chem. Plasma Process. 30(1), 1–20 (2010)

    Article  Google Scholar 

  56. Bruggeman, P.; Cunge, G.; Sadeghi, N.: Absolute OH density measurements by broadband UV absorption in diffuse atmospheric-pressure He–H2O RF glow discharges. Plasma Sour Sci. Technol. 21(3), 035019 (2012)

    Article  Google Scholar 

  57. Wandell, R.J.; Locke, B.R.: Hydrogen peroxide generation in low power pulsed water spray plasma reactors. Ind. Eng. Chem. Res. 53(2), 609–618 (2014)

    Article  Google Scholar 

  58. Hayashi, Y.; Takada, N.; Wahyudiono, K.H.; Goto, M.: Hydrogen peroxide formation by electric discharge with fine bubbles Plasma Chem. Plasma Process. 37(1), 125–135 (2017)

    Article  Google Scholar 

  59. Ren, T.; Qi, W.; Su, R.; He, Z.: Promising techniques for depolymerization of lignin into value-added chemicals. ChemCatChem 11(2), 639–654 (2019)

    Article  Google Scholar 

  60. Davaritouchaee, M.; Hiscox, W.C.; Terrell, E.; Mancini, R.J.; Chen, S.: Mechanistic studies of milled and Kraft lignin oxidation by radical species. Green Chem. 22(4), 1182–1197 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (Grant Number JP20H02515) and JST SICORP (Grant Number JPMJSC18H1), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motonobu Goto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

diono, W., Ibuki, T., Machmudah, S. et al. Pulsed Discharge Plasma over the Surface of an Aqueous Solution to Induce Lignin Decomposition. Arab J Sci Eng 47, 5923–5934 (2022). https://doi.org/10.1007/s13369-021-05806-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05806-1

Keywords

Navigation