Skip to main content
Log in

Genesis of Sulfide Mineralization, Atshan and Darhib Areas, South Eastern Desert of Egypt: Evidence of Fluid Pathway Effects Along Shear Zones

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The studied sulfide mineralizations of Atshan and Darhib areas are related to the south Eastern Desert shear zones. They are hosted in talc- and tremolite-talc-rich rocks and also in meta-basaltic dykes and quartz-veins. The principal mineralization in Atshan includes sphalerite, pyrite, chalcopyrite, galena and pyrrhotite, whereas that in Darhib comprises chalcopyrite, sphalerite, pyrite, and galena with subordinate bornite and covellite. Darhib mineralization contains traces of altaite and electrum. Altaite has the highest Te concentrations suggesting crystallization under low fS2 and/or high fTe2 conditions, probably due to S budget consumption from the hydrothermal fluids in the late stage of deposition. Electrum has the highest Au contents with gold fineness value falling within the range of epithermal Au–Ag deposits. The dominance of recrystallized and replacement textures in the studied mineralizations suggests a secondary or post-depositional metamorphic overprint. The significant Cd contents in sphalerite from remobilized massive mineralizations hosted in tremolite-talc-rich rocks indicate crystallization at ~250–300 °C. Galena hosted in tremolite-talc-rich rocks is characterized by exceptionally high selenium and tellurium contents, indicating its generation from relatively Se–Te-enriched hydrothermal fluids. Pyrrhotite hosted in quartz-veins from Atshan was formed under lower sulfur activity (aS2) and oxygen fugacity (fO2). Covellite and bornite were formed due to chalcopyrite oxidation, revealing a role of supergene process. Shear zones, possibly produced during later thrust faulting, were acted as channel ways for hydrothermal mineralizing fluids that may have modified and/or precipitated the mineralization. Mineralizing fluids have probably resulted from dehydration during metamorphism and/or late-magmatic fluids from nearby granitic intrusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

source: Pan-African serpentinites [46, 47]; Fore-arc ophiolites from Eastern Desert [17, 42, 43]

Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stern, R.J.: Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Ann. Rev. Earth Planet. Sci. 22, 319–351 (1994)

    Google Scholar 

  2. Fritz, H.; Abdelsalam, M.; Ali, K.A.; Bingen, B.; Collins, A.S.; Fowler, A.R.; Hauzenberger, C.A.; Johnson, P.R.; Kusky, T.M.; Macey, P.; Muhongo, S.; Ghebreab, W.; Stern, R.J.; Viola, G.: Orogen styles in the East African Orogen: a review of the Neoproterozoic to Cambrian tectonic evolution. J. Afr. Earth Sci. 86, 65–106 (2013)

    Google Scholar 

  3. Ali, K.A.; Azer, M.K.; Gahlan, H.A.; Wilde, S.A.; Samuel, M.D.; Stern, R.J.: Age constraints on the formation and emplacement of Neoproterozoioc ophiolites along the Allaqi-Heiani suture, South Eastern Desert of Egypt. Gondwana Res. 18, 583–595 (2010)

    Google Scholar 

  4. Schandelmeier, H.; Richter, A.; Harms, U.: Proterozoic deformation of the East Saharan Craton in southeast Libya, south Egypt, and north Sudan. Tectonophysics 140, 233–246 (1987)

    Google Scholar 

  5. Kröner, A.; Krüger, J.; Rashwan, A.A.: Age and tectonic setting of granitoid gneisses in the Eastern Desert of Egypt and south-west Sinai. Geol. Rundsch. 83, 502–513 (1994)

    Google Scholar 

  6. Beyth, M.; Stern, R.; Altherr, R.; Kröner, A.: The late Precambrian Timna igneous complex, Southern Israel: evidence for comagmatic-type sanukitoid monzodiorite and alkali granite magma. Lithos 31(3), 103–124 (1994)

    Google Scholar 

  7. Azer, M.K.; Stern, R.J.; Kimura, J.I.: Origin of a Late Neoproterozoic (605±13 Ma) intrusive carbonate-albitite complex in Southern Sinai, Egypt. Int. J. Earth Sci. 99, 245–267 (2010)

    Google Scholar 

  8. Stern, R.J.; Kröner, A.; Rashwan, A.A.: A late Precambrian (710 Ma) high volcanicity rift in the southern Eastern Desert of Egypt. Geol. Rundsch. 80, 155–170 (1991)

    Google Scholar 

  9. Hussein, A.A.: Mineral deposits. In: Said, R. (Ed.) Geology of Egypt, pp. 511–566. Balkema, Rotterdam (1990)

    Google Scholar 

  10. Zidan, B.I.: Mineralogy and origin of the Precambrian massive sulphide deposit, Atshan Area, Egypt. In: Proceedings of the 1st International Conference on Geochemistry. Alexandria University, Egypt. pp. 238–251 (1989).

  11. Schandl, E.S.; Sharara, N.A.; Gorton, M.P.: The origin of the Atshan talc deposit in the Hamata area, Eastern Desert, Egypt: a geochemical and mineralogical study. Can. Mineral. 37, 1211–1227 (1999)

    Google Scholar 

  12. Abd Allah, A.G.: Two genetic types of volcanic-hosted massive sulfide mineralizations from the Eastern Desert of Egypt. Arab. J. Geosci. 5, 217–231 (2012)

    Google Scholar 

  13. Abdel-Karim, A.M.; El-Shafei, S.A.: Mineralogy and chemical aspects of some ophiolitic metaultramafics, central Eastern Desert, Egypt: evidences from chromites, sulphides and gangues. Geol. J. 53, 580–599 (2018)

    Google Scholar 

  14. Helmy, H.M.: Melonite group minerals and other tellurides from three Cu–Ni–PGE prospects, Eastern Desert, Egypt. Ore Geol. Rev. 26, 305–324 (2005)

    Google Scholar 

  15. Botros, N.S.: On the relationship between auriferous talc deposits hosted in volcanic rocks and massive sulphide deposits in Egypt. Ore Geol. Rev. 23, 223–257 (2003)

    Google Scholar 

  16. El Bassiony, M.W.: Geological and petrological studies on the area east of Derhib, south Eastern Desert, Egypt with special emphasis on the talc-occurrences. Ph.D. thesis, Cairo Univ., Egypt, 329 p. (1983).

  17. Ali, S.; Ntaflos, T.; Sami, M.: Geochemistry of Khor Um-Safi ophiolitic serpentinites, central Eastern Desert, Egypt: implications for Neoproterozoic arc-basin system in the Arabian-Nubian shield. Geochemistry 81, 125690 (2021). https://doi.org/10.1016/j.chemer.2020.125690

    Article  Google Scholar 

  18. Selim, A.Q.: Mineralization and wall rock alteration in Al-Derhib mine, south Eastern Desert, Egypt. M.Sc. thesis, Cairo Univ., Cairo, 218 p (1994).

  19. Bence, A.E.; Albee, A.L.: Empirical correction factors for the electron microanalysis of silicate and oxides. J. Geol. 76, 382–403 (1968)

    Google Scholar 

  20. Pearce, N.J.G.; Perkins, W.T.; Westgate, J.A.; Gorton, M.P.; Jackson, S.E.; Neal, C.R.; Chenery, S.P.: A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand. Newslett. 21, 115–144 (1997)

    Google Scholar 

  21. Morishita, T.; Ishida, Y.; Arai, S.; Shirasaka, M.: Determination of multiple trace element compositions in thin (>30 μm) layers of NIST SRM 614 and 616 using laser ablation-nductively coupled plasma-mass spectrometry. Geostand. Geoanal. Res. 29, 107–122 (2005)

    Google Scholar 

  22. Abdel-Karim, A.M.; Ali, S.; El-Awady, A.; Elwan, W.; Khedr, M.Z.; Tamura, A.: Mineral and bulk–rock chemistry of Shadli bimodal metavolcanics from Eastern Desert of Egypt: implication for tectonomagmatic setting and neoproterozoic continental growth in the Arabian-Nubian shield. Lithos 338–339, 204–217 (2019)

    Google Scholar 

  23. Kotschoubey, B.; Villas, R.N.; Aires, B.: Chloritites of the Tocantins Group, Araguaia fold belt, central-northern Brazil: vestiges of basaltic magmatism and metallogenetic implications. J. S. Am. Earth Sci. 69, 171–193 (2016)

    Google Scholar 

  24. Kucha, H.; Stumpfl, E.F.: Thiosulphates as precursors of banded sphalerite and pyrite at Bleiberg, Austria. Mineral. Mag. 56, 165–172 (1992)

    Google Scholar 

  25. Wright, J.; Lentz, D.R.; Rossiter, S.; Garland, P.: Analysis of Au–Ag mineralization in the caribou base-metal VMS deposit, New Brunswick; examination of micro-scale inter- and intra-sulphide distribution and its relation to geometallurgy. Minerals 6, 113 (2016). https://doi.org/10.3390/min6040113

    Article  Google Scholar 

  26. Morrison, G.W.; Rose, W.J.; Jaireth, S.: Geological and geochemical controls on the silver content (fineness) of gold in gold-silver deposits. Ore Geol Rev 6(4), 333–364 (1991)

    Google Scholar 

  27. Locock, A.J.: An excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput. Geosci. 62, 1–11 (2014)

    Google Scholar 

  28. Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D.: IMA report, nomenclature of the amphibole supergroup. Am. Mineral. 97, 2031–2048 (2012)

    Google Scholar 

  29. Wicks, F.J.; Plant, A.G.: Electron microprobe and X-ray microbeam studies of serpentine textures. Can. Mineral. 17, 785–830 (1979)

    Google Scholar 

  30. Hey, H.M.: A new review of the chlorites. Mineral. Mag. 30, 272–292 (1954)

    Google Scholar 

  31. Romanovuch, E.V.: Talc deposits of U.S.S.R.: Nedra, Moscow, (in Russian), 224 p (1974).

  32. Romanovuch, E.V.: Mineral deposits. Nedra, (in Russian), 76 p (1985).

  33. Sun, S.; McDonough, W.F.: Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D.; Norry, M.J. (Eds.) Magmatism in the Ocean Basins, Vol. 42, pp. 313–345. Geological Society Special Publication, London (1989)

    Google Scholar 

  34. Norman, M.; Garcia, M.O.: Pietruszka, A.: Trace-element distribution coefficients for pyroxenes, plagioclase, and olivine in evolved tholeiites from the 1955 eruption of Kilauea Volcano, Hawaiʼi, and petrogenesis of differentiated rift-zone lavas. Am. Mineral. 90, 888–899 (2005).

  35. Khedr, M.Z.; Arai, S.; Tamura, A.; Morishita, T.: Clinopyroxenes in high-P metaperidotites from Happo-O’ne, central Japan: implications for wedge-transversal chemical change of slab-derived fluids. Lithos 119, 439–456 (2010)

    Google Scholar 

  36. Salters, V.J.M.; Stracke, A.: Composition of the depleted mantle. Geochem. Geophys. Geosyst. (2004). https://doi.org/10.1029/2003GC000597

    Article  Google Scholar 

  37. Bodinier, J.L.; Godard, M.: Orogenic, ophiolitic, and abyssal peridotites. In: Carlson, R.W. (Ed.) Treatise on Geochemistry Mantle and core: Treatise on Geochemistry, 2nd edn., pp. 103–170. Elsevier Science Ltd, Amsterdam (2003)

    Google Scholar 

  38. Zimmer, M.; Kröner, A.; Jochum, K.P.; Reischmann, T.; Todt, W.: The Gabal Gerf complex: a precambrian N-MORB ophiolite in the nubian shield NE Africa. Chem. Geol. 123, 29–51 (1995)

    Google Scholar 

  39. Azer, M.K.; Khalil, A.E.S.: Petrological and mineralogical studies of Pan-African serpentinites at Bir Al-Edeid area, central Eastern Desert, Egypt. J. Afr. Earth Sci. 43, 525–536 (2005)

    Google Scholar 

  40. Azer, M.K.; Stern, R.J.: Neoproterozoic (835–720 Ma) serpentinites in the Eastern Desert, Egypt: fragments of forearc mantle. Geology 115, 457–472 (2007)

    Google Scholar 

  41. Azer, M.K.; Samuel, M.D.; Ali, K.A.; Gahlan, H.A.; Stern, R.J.; Ren, M.; Moussa, H.E.: Neoproterozoic ophiolitic peridotites along the Allaqi-Heiani Suture, South Eastern Desert, Egypt. Mineral. Petrol. 107(5), 829–848 (2013)

    Google Scholar 

  42. Abdel-Karim, A.M.; Ali, S.; Helmy, H.M.; El-Shafei, S.A.: A fore-arc setting of the Gerf ophiolite, Eastern Desert, Egypt: evidence from mineral chemistry and geochemistry of ultramafites. Lithos 263, 52–65 (2016)

    Google Scholar 

  43. Abdel-Karim, A.M.; Ali, S.; El-Shafei, S.A.: Mineral chemistry and geochemistry of ophiolitic metaultramafics from Um Halham and Fawakhir, Central Eastern Desert, Egypt. Int. J. Earth Sci. 107(7), 2337–2355 (2018)

    Google Scholar 

  44. Sedki, T.; Ali, S.; Mohamed, H.A.: Geochemical characterization of the Sol Hamed Neoproterozoic ophiolitic serpentinites, Southern Eastern Desert. In: Egypt. Abstract me of the 7 International Conference of LIP. Tomsk, Russia, pp. 136–137 (2019), 28 August–8 September 2019.

  45. Floyd, P.A.: Oceanic Basalts. Blachie and Son Ltd, New York (1991)

    Google Scholar 

  46. El Bahariya, G.; Arai, S.: Petrology and origin of Pan-African serpentinites with particular reference to chromian spinel compositions, Eastern desert, Egypt: implication for supra-subduction zone ophiolite. In: Third International Conference on the Geology of Africa. Assiut University, Egypt, pp. 371–388 (2003).

  47. Abdel-Karim, A.M.; Ahmed, Z.: Possible origin of the ophiolites of Eastern Desert of Egypt, from geochemical prospectives. Arab. J. Sci. Eng. 34(1C), 1–2 (2010)

    Google Scholar 

  48. Deschamps, F.; Godar, M.; Guillot, S.; Hattori, K.: Geochemistry of subduction zone serpentinites: a review. Lithos 178, 96–127 (2013)

    Google Scholar 

  49. Paulick, H.; Bach, W.; Godard, M.; De Hoog, J.C.M.; Suhr, G.; Harvey, J.: Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 158209N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chem. Geol. 234, 179–210 (2006)

    Google Scholar 

  50. Schandl, E.S.; Sharara, N.A.; Gorton, M.P.: The origin of major talc deposits in the Eastern Desert of Egypt: relict fragments of a metamorphosed carbonate horizon? J. Afr. Earth Sci. 34, 259–273 (2002)

    Google Scholar 

  51. Farahat, E.S.; Ali, S.; Hauzenberger, C.: Red Sea rift-related Quseir basalts, central Eastern Desert, Egypt: petrogenesis and tectonic processes. Bull. Volcanol. (2017). https://doi.org/10.1007/s00445-016-1092-6

    Article  Google Scholar 

  52. Farahat, E.S.; Ali, S.: Origin and geotectonic evolution of Mir Tertiary basaltic andesite dykes, Western Desert, Egypt: constraints from mineral and bulk-rock chemistry. Geol. J. 54, 2274–2287 (2019)

    Google Scholar 

  53. Ali, S.; Alshammari, A.S.: Genesis of gabbroic intrusions in the Arabian Shield, Saudi Arabia: mineralogical, geochemical and tectonic fingerprints of the Neoproterozoic arc magmatism. Geol. Mag. (2021). https://doi.org/10.1017/S0016756821000182

    Article  Google Scholar 

  54. Niu, Y.; Langmuir, C.H.; Kinzler, R.J.: The origin of abyssal peridotites: a new perspective. Earth Planet. Sci. Lett. 152, 251–265 (1997)

    Google Scholar 

  55. Douville, E.; Charlou, J.L.; Oelkers, E.H.; Bienvenu, P.; Jove Colon, C.F.; Donval, J.P.; Fouquet, Y.; Pricur, D.; Appriou, P.: The rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace element content in mid-Atlantic ridge hydrothermal fluids. Chem. Geol. 184, 37–48 (2002)

    Google Scholar 

  56. Allen, D.E.; Seyfried, E.: REE controls in ultramafic-hosted MOR hydrothermal systems: an experimental study at elevated temperature and pressure. Geochim. Cosmochim. Acta 69, 675–683 (2005)

    Google Scholar 

  57. Yoshitake, N.; Arai, S.; Ishida, Y.; Tamura, A.: Geochemical characteristics of chloritization of mafic crust from the northern Oman ophiolite: implications for estimating the chemical budget of hydrothermal alteration of the oceanic lithosphere. J. Mineral. Petrol. Sci. 104(3), 156–163 (2009)

    Google Scholar 

  58. Polovina, S.S.: Petrographic and geochemical characteristics of post-magmatic hydrothermal alteration and mineralization in the JM Reef, Stillwater Complex, Montana. Can. Mineral. 42, 261–277 (2004)

    Google Scholar 

  59. Qian, Z.: Trace elements in galena and sphalerite and their geochemical significance in distinguishing the genetic types of Pb–Zn ore deposits. Chin. J. Geochem. 6, 177–190 (1987)

    Google Scholar 

  60. Craig, J.R.; Vokes, F.M.: The metamorphism of pyrite and pyritic ores: an overview. Mineral. Mag. 57, 3–18 (1993)

    Google Scholar 

  61. Liu, H.; Chang, L.L.Y.: Phase relations in the system PbS–PbSe–PbTe. Mineral. Mag. 58, 567–578 (1994)

    Google Scholar 

  62. Hannington, M.D.; de Ronde, C.E.J.; Petersen, S.: Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P. (Eds.), Proceedings of the 100th anniversary volume of economic geology. Society of Economic Geologists, Littleton, pp. 111–142 (2005).

  63. Layton-Matthews, D.; Peter, J.M.; Scott, S.D.; Leybourne, M.I.: Distribution, mineralogy, and geochemistry of selenium in felsic volcanic hosted massive sulfide deposits of the Finlayson Lake District, Yukon territory, Canada. Econ. Geol. 103, 61–88 (2008)

    Google Scholar 

  64. Maslennikov, V.V; Zaykov, V.V.; Monacke, T.; Large, R.R.; Danyushevsky, L.V.; Maslennikova, S.P.; Allen, R.L.; Çağatay, N.; Revan, M.K.: Ore facies of volcanic massive sulfide deposits in Pontides. In: The 2nd International Symposium on the Geology of the Black Sea Region, Turkey. Abstracts, p. 123 (2009).

  65. Brueckner, S.M.; Piercey, S.J.; Pilote, J.; Layne, G.D.; Sylvester, P.J.: Mineralogy and mineral chemistry of the metamorphosed and precious metal-bearing Ming deposit, Canada. Ore Geol. Rev. 72, 914–939 (2016)

    Google Scholar 

  66. Fadda, S.; Fiori, M.; Grillo, M.S.: Chemical variations in tetrahedrite-tennantite minerals from the Furtei epithermal Au deposit, Sardinia, Italy: mineral zoning and ore fluids evolution. Au-Ag-Te-Se deposits, IGCP Project 486, Bulgaria, 14–19 September, pp. 9–84 (2005).

  67. Large, R.R.; Both, R.A.: The volcanogenic sulfide ores at Mount Chalmers, Eastern Queensland. Econ. Geol. 75, 992–1009 (1980)

    Google Scholar 

  68. Genken, A.D.; Bortnikov, N.S.; Cabri, L.J.; Wagner, F.; Stanley, C.J.; Safonov, J.G.; McMahon, G.; Kerzin, A.L.; Gamyanin, G.N.: A multidisciplinary study of invisible gold in arsenopyrite from four mesothermal gold deposits in Siberia, Russian Federation. Econ. Geol. 93, 463–487 (1998)

    Google Scholar 

  69. Robb, L.: Introduction to ore-forming processes. Blackwell Publishing, Hoboken, 373 p (2005).

  70. Khedr, M.Z.; Arai, S.: Composite origin of magnetite deposits hosted in Oman peridotites: evidence for iron mobility during serpentinization. Ore Geol. Rev. 101, 180–198 (2018)

    Google Scholar 

  71. Metcalf, R.V.; Shervais, J.W.: Suprasubduction-zone ophiolites: is there really an ophiolite conundrum? Geol. Soc. Am. Special Papers 438, 191–222 (2008)

    Google Scholar 

  72. Bourcier, W.L.; Barnes, H.L.: Ore solution chemistry-VIII. Stabilities of chloride and bisulfide complexes. Econ. Geol. 82, 1839–1863 (1987).

  73. Abdel-Rahman, Y.; Surour, A.A.; El-Manawy, A.W.; El-Dougdoug, A.A.; Omar, S.: Regional setting and characteristics of the Neoproterozoic Wadi Hamama Zn–Cu–Ag–Au prospect: evidence for an intra-oceanic island arc-hosted volcanogenic hydrothermal system. Int. J. Earth Sci. 104, 625–644 (2015)

    Google Scholar 

  74. Herzig, P.M.; Hannington, M.D.: Polymetallic massive sulfides at the modern seafloor: a review. Ore Geol. Rev. 10, 95–115 (1995)

    Google Scholar 

  75. Seward, T.M.: Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochim. Cosmochim. Acta 37, 370–399 (1973)

    Google Scholar 

  76. Cooke, D.R.; McPhail, D.C.: Epithermal Au-Ag-Te mineralization, Acupan, Baguio District, Philippines: numerical simulations of mineral deposition. Econ. Geol. 96, 109–131 (2001)

    Google Scholar 

  77. Khudeir, A.A.; El Haddad, M.A.; Leake, B.E.: Compositional variation in chromite from the Eastern Desert. Mineral. Mag. 56, 567–574 (1992)

    Google Scholar 

  78. Khalil, A.E.S.; Azer, M.K.: Supra-subduction affinity in the Neoproterozoic serpentinites in the Eastern Desert, Egypt: evidence from mineral composition. J. Afr. Earth Sci. 49, 136–152 (2007)

    Google Scholar 

  79. Khedr, M.Z.; Arai, S.: Origin of Neoproterozoic ophiolitic peridotites in south Eastern Desert, Egypt, constrained from primary mantle mineral chemistry. Mineral. Petrol. 107, 807–828 (2013)

    Google Scholar 

  80. Cathelineau, M.; Nieva, D.: A chlorite solid solution geothermometer: the Los Azufres (Mexico) geothermal system. Contrib. Mineral. Petrol. 91, 235–244 (1985). https://doi.org/10.1007/BF00413350

    Article  Google Scholar 

  81. Olivier, N.; Boyet, M.: Rare earth and trace elements of microbialites in Upper Jurassic coral- and sponge-microbialite reefs. Chem. Geol. 230, 105–123 (2006)

    Google Scholar 

  82. Bach, W.; Garrido, C.J.; Paulick, H.; Harvey, J.; Rosner, M.: Seawater–peridotite interactions: first insights from ODP Leg 209, MAR 15°N. Geochem. Geophys. Geosyst. (2004). https://doi.org/10.1029/2004GC000744

    Article  Google Scholar 

  83. Girardeau, J.; Mevel, C.: Amphibolitized sheared gabbros from ophiolites as indicators of the evolution of the oceanic crust: Bay of islands, Newfoundland. Earth Planet. Sci. Lett. 61, 151–165 (1982)

    Google Scholar 

Download references

Acknowledgements

M.Z. Khedr would like to thank Shoji Arai and Tomo Morishita, Kanazawa University (Japan), for providing EPMA analytical facilities of silicate minerals during his post-doctor in Kanazawa, Japan. The authors are grateful to Ian Honsberger and one anonymous AJSE reviewer and subject editor M.N. Çağatay for their precious comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shehata Ali.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Karim, AA.M., El-Awady, A., Khedr, M.Z. et al. Genesis of Sulfide Mineralization, Atshan and Darhib Areas, South Eastern Desert of Egypt: Evidence of Fluid Pathway Effects Along Shear Zones. Arab J Sci Eng 47, 641–665 (2022). https://doi.org/10.1007/s13369-021-05736-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05736-y

Keywords

Navigation