Skip to main content
Log in

A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Chlorite constitutes a major hydrothermal alteration product of metamorphism of andesites, in the active geothermal system of Los Azufres (Mexico). Electron microprobe analyses performed on a set of crystals from each sample show wide variations in composition. Correlation coefficients among chemical constituents were calculated. It is shown that the tetrahedral charge is positively correlated with the octahedral vacancy and negatively with the iron content, and there is almost no correlation with the octahedral aluminium and magnesium content. A procedure is proposed to select end-members and substitution vectors, and to give a general formula for these chlorites.

Their formation temperatures are estimated with great accuracy, combining results of microthermometric data on fluid inclusions from gangue minerals of chlorites (quartz, calcite), direct measurements in wells (Kuster equipment), and chemical geothermometers. Correlations between chlorite compositions, range and nature of site occupancy, and temperature are good. Formation temperatures of chlorites range from 130° C to 300° C. As no other thermodynamic parameter varies significantly in the studied field (composition of the host rocks, nature of the geothermal fluids, pressure, ...), these variations of site occupancy (mainly Al(IV) and the octahedral occupancy (6-Al(VI)-(Mg+Fe(2+)) = VAC) are considered mainly as temperature dependent.

Molar fractions of each end-member show very different variations with increasing temperature: X-kaolinite decreases, and X-chamosite increases, while X-talc-3 brucite does not show significant change. From these data, activity coefficients and standard state chemical potential of major components, and molar free energy formation of chlorite have been calculated for each temperature of crystallisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagard P, Helgeson NC (1983) Activity/composition relations among silicates and aqueous solutions: II Chemical and thermodynamic consequences of ideal mixing of atoms on homological sites in montmorillonites, illites and mixed-layer clays. Clays Clay Miner 31:207–217

    Google Scholar 

  • Bragg VM (1937) Atomic Structure of Minerals. Cornell University Press, Ithaca

    Google Scholar 

  • Bragg VM, Claringbull GF (1965) Crystal Structures of Minerals. Bell and Sons, London

    Google Scholar 

  • Brown G (1961) X-ray identification and crystal structures of clay minerals, vol XI, pp 478–479. Mineral Soc London

  • Browne PRL, Ellis AJ (1970) The Ohaki-Broadlands hydrothermal area, New Zealand: Mineralogy and related geochemistry. Am J Sci 269:97–131

    Google Scholar 

  • Camacho P (1976) Mapa preliminar del area geotermica de Los Azufres, Michoacan. Comision Federal de Electricidad, Internal Report. Unpublished, Mexico City

  • Cathelineau M (1981) Les gisements d'uranium liés spatialement aux leucogranites sudarmoricains et à leur encaissant métamorphique. Sci de la Terre, Mem 42

  • Cathelineau M (1983a) Potassic alteration in French hydrothermal uranium deposits. Mineral Deposita 18:89–97

    Google Scholar 

  • Cathelineau M (1983b) Les minéraux phylliteux dans les gisements hydrothermaux d'uranium français. II Distribution et évolution cristallochimique des illites, interstratifiés, smectites et chlorites. Bull Mineral 106:553–569

    Google Scholar 

  • Cathelineau M (1985) Quartz leaching and hydrothermal alkali metasomatism in granites. J Petrol (in press)

  • Cathelineau M, Oliver R, Izquierdo G, Garfias A, Nieva D, Izaguirre O (1983) Mineralogy and distribution of hydrothermal mineral zones in the Los Azufres (Mexico) geothermal field. Proc Ninth Annual Workshop on Geothermal Reservoir Engineering, Stanford University, Palo Alto, California, Dec 13–15

    Google Scholar 

  • Cathelineau M, Nieva D, Garfias A (1984) Active metamorphism of the Los Azufres geothermal system (Michoacan, Mexico): Mineralogy, geochemistry and mineral equilibria. Abstr 27th Int Geol Congress, Moscow

  • Cathelineau M, Oliver R, Garfias A, Nieva O (1985) Mineralogy and distribution of hydrothermal mineral zones in the Los Azufres (Mexico) geothermal field. Geothermics 14:49–57

    Google Scholar 

  • Cavaretta G, Gianelli G, Pudexxu M (1982) Formation of authigenic minerals and their use as indicators of the chemicophysical parameters of the fluid in the Larderello-Travale geothermal field. Econ Geol 77:1071–1084

    Google Scholar 

  • Combredet N (1983) Etude du puits Al du champ geothermique de Los Azufres (Michoacan, Mexique). 3rd Cycle thesis, Paris

  • Creasey SC (1959) Some phase relations in hydrothermally altered rocks of porphyry copper deposits. Econ Geol 54:351–373

    Google Scholar 

  • Cuney M (1981) Comportement de l'uranium et du thorium au cours du metamorphisme — Role de l'anatexie dans la genèse des magmas riches en radioéléments. Unpublished thesis. INPL Nancy, 520 p

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1962) Rock forming minerals. 3. Sheet silicates, Wiley, New York p 270

    Google Scholar 

  • Dunoyer de Segonzac G (1970) The transformation of clay minerals during diagenesis and low grade metamorphism. A review. Sedimentology 15:281–346

    Google Scholar 

  • Duplay J (1982) Analyses chimiques de populations de particules argileuses. Unpublished third cycle thesis. Univ Poitiers

  • Elders WA, Hoagland JR, Williams AE (1981) Distribution of hydrothermal mineral zones in the Cerro Prieto geothermal field of Baja California, Mexico. Geothermics 10:245–253

    Google Scholar 

  • Foster MD (1962) Interpretation of the composition and a classification of the chlorites. US Geol Surv Prof Pap 414A, pp 27

    Google Scholar 

  • Fournier RO, Potter RW (1982) A revised and expanded silica (quartz) geothermometer. GRC Bull Nov, p 3

  • Fournier RO, Truesdell AH (1973) “An empirical Na-K-Ca geothermometer for natural waters”. Geochim Cosmochim Acta 37:1255–1275

    Google Scholar 

  • Fritz B (1981) Etude thermodynamique et modélisation des réactions hydrothermales et diagénétiques. Sci Geol Mem 65:197

    Google Scholar 

  • Gutierrez NA, Aumento F (1982) The Los Azufres, Michoacan, Mexico, Geothermal field. J Hydrol 56:137–162

    Google Scholar 

  • Helgeson HC, Delany JM, Nesbitt HW, Biro OK (1978) Summary and critique of the thermodynamic properties of rock forming minerals. Am J Sci Vol 278 A, 229 p

  • Hey MH (1964) A review of chlorites. Mineral Mag 30:277–292

    Google Scholar 

  • Hower J, Eslinger EV, Hower ME, Perry EA (1976) Mechanism of burial metamorphism of argillaceous sediments. Mineralogical and chemical evidence. Geol Soc Am Bull 87:725–737

    Google Scholar 

  • Leroy J, Cathelineau M (1982) Les minéraux phylliteux dans les gisements hydrothermaux d'uranium I les micas hérités et néoformés. Bull Minerl 105:99–109

    Google Scholar 

  • Lowell JD, Guilbert JM (1970) Lateral and vertical alteration, mineralogy, zoning in porphyry ore deposits. Econ Geol 65:373–408

    Google Scholar 

  • Marignac C (1981) The metallic ore veins of Ain Barbar (Algeria) as consequence of alpine geothermal activity, In: Schneider (Ed) Mineral deposits of the Alps. Springer Berlin Heidelberg New York, pp 298–312

    Google Scholar 

  • Marignac C (1985) Les minéralisations filoniennes d'Aïr Barbar (Algérie): un exemple d'hydrothermalisme lié à l'activité géo thermique alpine en Afrique du Nord. Thesis INPL, 1200 p

  • McDowell SD, Elders WA (1980) Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California. Contrib Mineral Petrol 74:293–310

    Google Scholar 

  • Miyashiro A (1973) Metamorphism and metamorphic belts. Wiley and Sons, New York

    Google Scholar 

  • Muffler LPJ, White DE (1969) Active metamorphism of Upper Cenozoic sediments in the Salton Sea geothermal field and the Salton Trough, Southeastern California. Geol Soc Am Bull 80:157–182

    Google Scholar 

  • Nieva D, Qijana L, Garfias A N RM, Laredo F (1983) Heterogeneity of the liquid phase, and vapor separation in Los Azufres (Mexico) geothermal reservoir. Proceedings Ninth Workshop Geothermal Reservoir Engineering. Stanford University, California, SGP-TR-74

    Google Scholar 

  • Oliver R (1981) Geologia de la Zona Geotermica de Los Azufres, Michoacan. Unpublished. IPN Thesis, Mexico

  • Pascal ML (1984) Les albitites du Massif de l'Agly (Pyrénées Orientales). 3rd cycle thesis, ENSM Paris

    Google Scholar 

  • Poty B, Leroy J, Jachimowicz L (1976) Un nouvel appareil pour la mesure de températures sous le microscope, l'installation de microthermometrie Chaix-Meca. Bull Soc Fr Mineral Cristallogr 99:182–186

    Google Scholar 

  • Poty B (1969) La croissance des cristaux de quartz dans les filons sur l'exemple du filon de la Gardette (Bourg d'Oisans) et des filons du Massif du Mont Blanc. Sci de la Terre, Mem 17

  • Shirozu H (1978) Chlorite minerals, In: Developments in sedimen tology, vol 26, pp 243–264. Elsevier, Amsterdam Oxford New York

    Google Scholar 

  • Steiner A (1977) The Wairakei geothermal area, North Island, New Zealand: its subsurface geology and hydrothermal rock alteration. New Zealand Geol Surv Bull 90:136

    Google Scholar 

  • Stoessel RK (1979) A regular solution site-mixing model for illites. Geochim Cosmoch Acta 43:1151–1159

    Google Scholar 

  • Stoessel RK (1981) Refinements in a site-mixing model for illites: local electrostatic balance and the quasi-chemical approximation. Geochim Cosmochim Acta 45:1733–1741

    Google Scholar 

  • Stoessel RK (1984) Regular solution site-mixing model for chlorites. Clays Clay Miner 32:205–212

    Google Scholar 

  • Tardy Y, Garrels RM (1974) A method of estimating the Gibbs energies of formation of layer silicates. Geochim Cosmochim Acta 38:1101–1116

    Google Scholar 

  • Tardy Y, Fritz B (1981) An ideal solid solution model for calculating solubility of clay minerals. Clay Miner 16:361–373

    Google Scholar 

  • Tardy Y, Duplay J, Fritz B (1981) Chemical composition of individual clay particles: an ideal solid solution model. Intern Clay Conf Developements in sedimentology, 35:441–450

    Google Scholar 

  • Taylor GL, Ruotsala AP, Keeling Jr RO (1968) Analysis of iron in layer silicates by Mössbauer spectroscopy. Clays Clay Miner Proc 16:381–391

    Google Scholar 

  • Tomasson J, Kristmannsdottir H (1972) High temperature alteration minerals and thermal brines, Reykjanes, Iceland. Contrib Mineral Petrol 36:123–134

    Google Scholar 

  • Thompson JR Jr, Thompson AB (1976) A model system for mineral facies in pelitic schists. Contrib Mineral Petrol 58:3–55

    Google Scholar 

  • Thompson JB Jr, Laird J, Thompson AB (1982) Reactions in amphibolite, greenschist and blueschist. J Petrol 58:1–27

    Google Scholar 

  • Velde B (1977) Clays and clay minerals in natural and synthetic systems. Developments in Sedimentology, Vol 21. Elsevier, Amsterdam Oxford New York

    Google Scholar 

  • Verma SP (1983) Magma genesis and chamber processes at Los Humeros Caldera Mexico. Nd and Sr isotope area. Nature 301:52–55

    Google Scholar 

  • Walshe JL, Solomon M (1981) An investigation into the environment of formation of the volcanic hosted Mt Lyell copper deposits using geology, mineralogy, stable isotopes and a six component chlorite solid solution model. Econ Geol 76:246–284

    Google Scholar 

  • Weaver CE, Pollard LD (1973) The chemistry of clay minerals. Developments in sedimentology, vol 15, Elsevier, Amsterdam Oxford New York pp 213

    Google Scholar 

  • Yerle JJ (1978) Albitisations et mineralisations uranifères dans le socle et les sediments permo-houillers du Bassin de Brousse Broquiès (Aveyron, France). 3rd Cycle thesis. ENSM Paris

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cathelineau, M., Nieva, D. A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system. Contr. Mineral. and Petrol. 91, 235–244 (1985). https://doi.org/10.1007/BF00413350

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00413350

Keywords

Navigation