Skip to main content
Log in

Effect of Microwave Irradiation on the Catalytic Activity of Tetragonal Zirconia: Selective Hydrogenation of Aldehyde

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Tetragonal zirconia was synthesized through microwave modified method and screened for the model reaction (hydrogenation of octanal to octanol) in self-design microwave reactor in a solvent-free system. The catalyst shows microwave cooperative activity with high selectivity toward desire products. The same reaction was also performed under conventional heating system in Parr reactor. The microwave protocol was found more effective in term of conversion and selectivity under optimal reaction conditions. The enhance activity is due to enormous reducing sites production on the surface triggered by microwave irradiation. Here, the mechanism of acidic site population on the surface was comprehensively investigated and correlated with catalyst efficiency. The gas chromatographic studies revealed the formation of octanol as a major product while other small peaks reflect the formation of byproducts C16 aldol, C16 α, β-unsaturated aldehyde and C24 acetal. Thus, the tetragonal zirconia can be used for the conversion of aldehyde to alcohol under microwave irradiation efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

Similar content being viewed by others

References

  1. Scotti, N.; Bossola, F.; Zaccheria, F.; Ravasio, N.: Copper–Zirconia catalysts: powerful multifunctional catalytic tools to approach sustainable processes. Catalysts 10, 168 (2020)

    Article  Google Scholar 

  2. Kauppi, E.I.; Honkala, K.; Krause, A.O.I.; Kanervo, J.M.; Lefferts, L.: ZrO2 Acting as a redox catalyst. Top. Catal. 59, 823–832 (2016)

    Article  Google Scholar 

  3. Gole, B.J.L.; Prokes, S.M.; Stout, J.D.; Glembocki, O.J.; Yang, R.: Unique properties of selectively formed zirconia nanostructures. Adv. Mater. 5, 664–667 (2006)

    Article  Google Scholar 

  4. Das, D.; Mishra, H.K.; Dalai, A.K.; Parida, K.M.: Iron, and manganese doped SO 42-/ZrO2-TiO2 mixed oxide catalysts: studies on acidity and benzene isopropylation activity. Catal. Lett. 93, 185–193 (2004)

    Article  Google Scholar 

  5. Haikarainen, T.; Paturi, P.; Lindén, J.; Haataja, S.; Meyer, K.W.; Finne, J.; Papageorgiou, A.C.: Magnetic properties and structural characterization of iron oxide nanoparticles formed by Streptococcus suis Dpr and four mutants. J. Biol. Inorg. Chem. 16, 799–807 (2011)

    Article  Google Scholar 

  6. He, D.; Ding, Y.; Luo, H.; Li, C.: Effects of zirconia phase on the synthesis of higher alcohols over zirconia and modified zirconia. J. Mol. Catal. A Chem. 208, 267–271 (2004)

    Article  Google Scholar 

  7. Roy, S.: Nanocrystalline undoped tetragonal and cubic zirconia synthesized using poly-acrylamide as gel and matrix. J. Sol–Gel Sci. Technol. 44, 227–233 (2007)

    Article  Google Scholar 

  8. Zhao, Y.; Li, W.; Zhang, M.; Tao, K.: A comparison of surface acidic features between tetragonal and monoclinic nanostructured zirconia. Catal. Commun. 3, 239–245 (2002)

    Article  Google Scholar 

  9. Fernández-Morales, J.M.; Castillejos, E.; Asedegbega-Nieto, E.; Dongil, A.B.; Rodríguez-Ramos, I.; Guerrero-Ruiz, A.: Comparative study of different acidic surface structures in solid catalysts applied for the isobutene dimerization reaction. Nanomaterials 10, 1–16 (2020)

    Article  Google Scholar 

  10. Fan, Y.; Cheng, S.; Wang, H.; Tian, J.; Xie, S.; Pei, Y.; Qiao, M.; Zong, B.: Pt–WOx on monoclinic or tetrahedral ZrO2: crystal phase effect of zirconia on glycerol hydrogenolysis to 1,3-propanediol. Appl. Catal. B Environ. 217, 331–341 (2017)

    Article  Google Scholar 

  11. Jung, K.T.; Bell, A.T.: Effects of catalyst phase structure on the elementary processes involved in the synthesis of dimethyl carbonate from methanol and carbon dioxide over zirconia. Top. Catal. 20, 97–105 (2002)

    Article  Google Scholar 

  12. Marlowe, J.; Acharya, S.; Zuber, A.; Tsilomelekis, G.: Characterization of sulfated SnO2–ZrO2 catalysts and their catalytic performance on the tert-butylation of phenol. Catalysts (2020). https://doi.org/10.3390/catal10070726

    Article  Google Scholar 

  13. Brei, V.V.: Superacids based on zirconium dioxide. Theor. Exp. Chem. 41, 165–175 (2005)

    Article  Google Scholar 

  14. Thimmaraju, N.; Shamshuddin, S.Z.M.; Pratap, S.R.; Raja, K.: Efficient microwave synthesis of novel aromatic esters catalyzed by zirconia and its modified forms: a kinetic study. RSC. Adv. 5, 99517–99528 (2015)

    Article  Google Scholar 

  15. Pratap, S.R.; Shamshuddin, S.Z.M.; Thimmaraju, N.; Shyamsundar, M.: Cordierite honeycomb monoliths coated with Al(III)/ZrO2 as an efficient and reusable catalyst for the Knoevenagel condensation: a faster kinetics. Arab. J. Chem. 13, 2734–2749 (2020)

    Article  Google Scholar 

  16. Romano, P.N.; de Almeida, J.M.A.R.; Carvalho, Y.; Priecel, P.; Falabella, S.A.E.; Lopez-Sanchez, J.A.: Microwave-assisted selective hydrogenation of furfural to Furfuryl alcohol employing a green and noble metal-free copper catalyst. Chemsuschem 9, 3387–3392 (2016)

    Article  Google Scholar 

  17. Banik, B.K.; Barakat, K.J.; Dilip, R.W.; Manhas, M.S.; Bose, A.K.: Microwave-assisted rapid and simplified hydrogenation. J. Org. Chem. 64, 5746–5753 (2010)

    Article  Google Scholar 

  18. Zhang, X.; Hayward, D.O.; Lee, C.; Mingos, D.M.P.: Microwave assisted catalytic reduction of sulfur dioxide with methane over MoS2 catalysts. Appl. Catal. B. 33, 137–148 (2001)

    Article  Google Scholar 

  19. Teng, W.K.; Yusoff, R.; Aroua, M.K.; Ngoh, G.C.: Process optimization and kinetics of microwave assisted transesterification of crude glycerol for the production of glycerol carbonate. Sustain. Energy Fuels 5, 274–282 (2021)

    Article  Google Scholar 

  20. Xu, W.; Zhou, J.; Li, H.; Yang, P.; You, Z.; Luo, Y.: Microwave-assisted catalytic reduction of NO into N2 by activated carbon supported Mn2O3 at low temperature under O2 excess. Fuel Process. Technol. 127, 1–6 (2014)

    Article  Google Scholar 

  21. Pratap, S.R.; Shamshuddin, S.Z.M.; Shyamprasad, K.: Microwave assisted synthesis of propyl esters over modified versions of zirconia: kinetic study. Chem. Data Collect. 30, 100579 (2020)

    Article  Google Scholar 

  22. Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S.: Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc. Chem. Res. 47, 1338–1348 (2014)

    Article  Google Scholar 

  23. Barthos, R.; Lónyi, F.; Onyestyák, G.Y.; Valyon, J.: An NH3-TPD and-FR study on the acidity of sulfated zirconia. Solid State Ion. 141, 253–258 (2001)

    Article  Google Scholar 

  24. Akinnawo, C.A.; Bingwa, N.; Meijboom, R.: Surface properties vs activity of meso-ZrO2 catalyst in chemoselective Meerwein-Ponndorf-Verley reduction of citral: effect of calcination temperature. Microporous Mesoporous Mater. 311, 110693 (2021)

    Article  Google Scholar 

  25. Heshmatpour, F.; Aghakhanpour, R.B.: Synthesis and characterization of superfine pure tetragonal nanocrystalline sulfated zirconia powder by a non-alkoxide sol–gel route. Adv. Powder Technol. 23, 80–87 (2012)

    Article  Google Scholar 

  26. Faro, A.C., Jr.; Souza, K.R.; Camorim, V.L.; Cardoso, M.B.: Zirconia–alumina mixing in alumina-supported zirconia prepared by impregnation with solutions of zirconium acetylacetonate. Phys. Chem. Chem. Phys. 5, 1932–1940 (2003)

    Article  Google Scholar 

  27. Morterra, C.; Cerrato, G.: Titrating surface acidity of sulfated zirconia catalysts: is the adsorption of pyridine a suitable probe? Phys. Chem. Chem. Phys. 1, 2825–2831 (1999)

    Article  Google Scholar 

  28. Sigwadi, R.; Dhlamini, M.; Mokrani, T.; Nemavhola, F.: Preparation of a high surface area zirconium oxide for fuel cell application. IJMME 14, 1–11 (2019)

    Google Scholar 

  29. García-Pérez, D.; Alvarez-Galvan, M.C.; Campos-Martin, J.M.; Fierro, J.L.G.: Influence of the reduction temperature and the nature of the support on the performance of zirconia and alumina-supported pt catalysts for n-dodecane hydroisomerization. Catalysts 11, 1–16 (2021)

    Article  Google Scholar 

  30. Chetty, T.; Dasireddy, V.D.; Callanan, L.H.; Friedrich, H.B.: Continuous flow preferential hydrogenation of an octanal/octene mixture using Cu/Al2O3 catalysts. ACS Omega 3, 7911–7924 (2018)

    Article  Google Scholar 

  31. Pentsak, E.O.; Cherepanova, V.A.; Sinayskiy, M.A.; Samokhin, A.V.; Ananikov, V.P.: Systematic study of the behavior of different metal and metal-containing particles under the microwave irradiation and transformation of nanoscale and microscale morphology. Nanomaterials 9, 55 (2019)

    Article  Google Scholar 

  32. Jacob, K.H.; Knözinger, E.; Benier, S.: Adsorption sites on polymorphic zirconia. J. Mater. Chem. 3, 651–657 (1993)

    Article  Google Scholar 

  33. Shao, Y.; Wang, T.; Sun, K.; Zhang, Z.; Zhang, L.; Li, Q.; Zhang, S.; Hu, G.; Hu, X.: Competition between acidic sites and hydrogenation sites in Cu/ZrO2 catalysts with different crystal phases for conversion of biomass-derived organics. Green Energy Environ. (2020). https://doi.org/10.1016/j.gee.2020.05.007

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Higher Education Commission of Pakistan under Project No. 20-1897/HEC/NRPU/R&D.

Author information

Authors and Affiliations

Authors

Contributions

Zaffar Iqbal was involved in investigation. Saima Sadiq was involved in writing—original draft. Muhammad Sadiq was involved in supervision. Idrees Khan was involved in writing—review & editing. Khalid Saeed was involved in conceptualization.

Corresponding authors

Correspondence to Muhammad Sadiq or Khalid Saeed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, Z., Sadiq, S., Sadiq, M. et al. Effect of Microwave Irradiation on the Catalytic Activity of Tetragonal Zirconia: Selective Hydrogenation of Aldehyde. Arab J Sci Eng 47, 5841–5848 (2022). https://doi.org/10.1007/s13369-021-05712-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05712-6

Keywords

Navigation