Skip to main content
Log in

Magnetic properties and structural characterization of iron oxide nanoparticles formed by Streptococcus suis Dpr and four mutants

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Streptococcus suis Dpr belongs to the Dps family of bacterial and archaeal proteins that oxidize Fe2+ to Fe3+ to protect microorganisms from oxidative damage. The oxidized iron is subsequently deposited as ferrihydrite inside a protein cavity, resulting in the formation of an iron core. The size and the magnetic properties of the iron core have attracted considerable attention for nanotechnological applications in recent years. Here, the magnetic and structural properties of the iron core in wild-type Dpr and four cavity mutants were studied. All samples clearly demonstrated a superparamagnetic behavior in superconducting quantum interference device magnetometry and Mössbauer spectroscopy compatible with that of superparamagnetic ferrihydrite nanoparticles. However, all the mutants exhibited higher magnetic moments than the wild-type protein. Furthermore, measurement of the iron content with inductively coupled plasma mass spectrometry revealed a smaller amount of iron in the iron cores of the mutants, suggesting that the mutations affect nucleation and iron deposition inside the cavity. The X-ray crystal structures of the mutants revealed no changes compared with the wild-type crystal structure; thus, the differences in the magnetic moments could not be attributed to structural changes in the protein. Extended X-ray absorption fine structure measurements showed that the coordination geometry of the iron cores of the mutants was similar to that of the wild-type protein. Taken together, these results suggest that mutation of the residues that surround the iron storage cavity could be exploited to selectively modify the magnetic properties of the iron core without affecting the structure of the protein and the geometry of the iron core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Dps:

DNA-binding protein from starved cells

EXAFS:

Extended X-ray absorption fine structure

FC:

Field-cooled

FOC:

Ferroxidase center

ICP-MS:

Inductively coupled plasma mass spectrometry

SQUID:

Superconducting quantum interference device

SsDpr:

Streptococcus suis Dps-like peroxide resistance protein

ZFC:

Zero-field-cooled

References

  1. Gupta AK, Gupta M (2005) Biomaterials 26:3995–4021. doi:10.1016/j.biomaterials.2004.10.012

    Article  PubMed  CAS  Google Scholar 

  2. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Chem Rev 108:2064–2110. doi:10.1021/cr068445e

    Article  PubMed  CAS  Google Scholar 

  3. Uchida M, Kang S, Reichhardt C, Harlen K, Douglas T (2010) Biochim Biophys Acta 1800:834–845. doi:10.1016/j.bbagen.2009.12.005

    PubMed  CAS  Google Scholar 

  4. Papaefthymiou G (2010) Biochim Biophys Acta 1800:886–897. doi:10.1016/j.bbagen.2010.03.018

    PubMed  CAS  Google Scholar 

  5. Michel FM, Hosein HA, Hausner DB, Debnath S, Parise JB, Strongin DR (2010) Biochim Biophys Acta 1800:871–885. doi:10.1016/j.bbagen.2010.05.007

    PubMed  CAS  Google Scholar 

  6. Bou-Abdallah F, Carney E, Chasteen ND, Arosio P, Viescas AJ, Papaefthymiou GC (2007) Biophys Chem 130:114–121. doi:10.1016/j.bpc.2007.08.003

    Article  PubMed  CAS  Google Scholar 

  7. Galvez N, Fernandez B, Sanchez P, Cuesta R, Ceolin M, Clemente-Leon M, Trasobares S, Lopez-Haro M, Calvino JJ, Stephan O, Dominguez-Vera JM (2008) J Am Chem Soc 130:8062–8068. doi:10.1021/ja800492z

    Article  PubMed  CAS  Google Scholar 

  8. Bozzi M, Mignogna G, Stefanini S, Barra D, Longhi C, Valenti P, Chiancone E (1997) J Biol Chem 272:3259–3265

    Article  PubMed  CAS  Google Scholar 

  9. Haikarainen T, Papageorgiou AC (2010) Cell Mol Life Sci 67:341–351. doi:10.1007/s00018-009-0168-2

    Article  PubMed  CAS  Google Scholar 

  10. Chiancone E, Ceci P (2010) Biochim Biophys Acta 1800:798–805. doi:10.1016/j.bbagen.2010.01.013

    PubMed  CAS  Google Scholar 

  11. Kilic MA, Spiro S, Moore GR (2003) Protein Sci 12:1663–1674. doi:10.1110/ps.0301903

    Article  PubMed  CAS  Google Scholar 

  12. Wade VJ, Levi S, Arosio P, Treffry A, Harrison PM, Mann S (1991) J Mol Biol 221:1443–1452 (pii:0022-2836(91)90944-2)

    Article  PubMed  CAS  Google Scholar 

  13. Santambrogio P, Pinto P, Levi S, Cozzi A, Rovida E, Albertini A, Artymiuk P, Harrison PM, Arosio P (1997) Biochem J 322(Pt 2):461–468

    PubMed  CAS  Google Scholar 

  14. Swift J, Wehbi WA, Kelly BD, Stowell XF, Saven JG, Dmochowski IJ (2006) J Am Chem Soc 128:6611–6619. doi:10.1021/ja057069x

    Article  PubMed  CAS  Google Scholar 

  15. Ceci P, Chiancone E, Kasyutich O, Bellapadrona G, Castelli L, Fittipaldi M, Gatteschi D, Innocenti C, Sangregorio C (2010) Chemistry 16:709–717. doi:10.1002/chem.200901138

    Article  PubMed  CAS  Google Scholar 

  16. Haataja S, Penttinen A, Pulliainen AT, Tikkanen K, Finne J, Papageorgiou AC (2002) Acta Crystallogr D Biol Crystallogr 58:1851–1853 (pii:S0907444902012970)

    Article  PubMed  Google Scholar 

  17. Pulliainen AT, Kauko A, Haataja S, Papageorgiou AC, Finne J (2005) Mol Microbiol 57:1086–1100. doi:10.1111/j.1365-2958.2005.04756.x

    Article  PubMed  CAS  Google Scholar 

  18. Kabsch W (2010) Acta Crystallogr D Biol Crystallogr 66:125–132. doi:10.1107/S0907444909047337

    Article  PubMed  Google Scholar 

  19. Leslie AG (2006) Acta Crystallogr D Biol Crystallogr 62:48–57. doi:10.1107/S0907444905039107

    Article  PubMed  Google Scholar 

  20. Collaborative Computational Project N (1994) Acta Crystallogr D Biol Crystallogr 50:760–763

    Google Scholar 

  21. Kauko A, Haataja S, Pulliainen AT, Finne J, Papageorgiou AC (2004) J Mol Biol 338:547–558

    Article  PubMed  CAS  Google Scholar 

  22. Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC (2002) Acta Crystallogr D Biol Crystallogr 58:1948–1954 (pii:S0907444902016657)

    Article  PubMed  Google Scholar 

  23. Emsley P, Cowtan K (2004) Acta Crystallogr D Biol Crystallogr 60:2126–2132. doi:10.1107/S0907444904019158

    Article  PubMed  Google Scholar 

  24. Krissinel E, Henrick K (2004) Acta Crystallogr D Biol Crystallogr 60:2256–2268. doi:10.1107/s0907444904026460

    Article  PubMed  CAS  Google Scholar 

  25. Korbas M, Marsa DF, Meyer-Klaucke W (2006) Review of scientific instruments 77:063105

  26. Wellenreuther G, Meyer-Klaucke W (2009) J Phys Conf Ser 190:1–4

    Google Scholar 

  27. Ressler T (1998) J Synchrotron Radiat 5:118–122. doi:10.1107/s0909049597019298

    Article  PubMed  CAS  Google Scholar 

  28. Tomic S, Searle BG, Wander A, Harrison NM, Dent AJ, Mosselmans JFW, Inglesfield JE (2005) CCLRC Technical Report DL-TR-2005-001:ISSN 1362-0207

  29. Kauko A, Pulliainen AT, Haataja S, Meyer-Klaucke W, Finne J, Papageorgiou AC (2006) J Mol Biol 364:97–109. doi:10.1016/j.jmb.2006.08.061

    Article  PubMed  CAS  Google Scholar 

  30. Michel FM, Ehm L, Antao SM, Lee PL, Chupas PJ, Liu G, Strongin DR, Schoonen MA, Phillips BL, Parise JB (2007) Science 316:1726–1729. doi:10.1126/science.1142525

    Article  PubMed  CAS  Google Scholar 

  31. Nichol H, Gakh O, O’Neill HA, Pickering IJ, Isaya G, George GN (2003) Biochemistry 42:5971–5976. doi:10.1021/bi027021l

    Article  PubMed  CAS  Google Scholar 

  32. Rohrer JS, Islam QT, Watt GD, Sayers DE, Theil EC (1990) Biochemistry 29:259–264

    Article  PubMed  CAS  Google Scholar 

  33. Hesse J, Bremers H, Hupe O, Veith M, Fritscher EW, Valtchev K (2000) J Magn Magn Mater 212:153–167

    Article  CAS  Google Scholar 

  34. Guertin RP, Harrison N, Zhou ZX, McCall S, Drymiotis F (2007) J Magn Magn Mater 308:97–100

    Article  CAS  Google Scholar 

  35. Gittleman JI, Abeles B, Bozowski S (1974) Phys Rev B 9:3891–3897

    Google Scholar 

  36. Kundig W, Bommel H, Constabaris G, Lindquist RH (1966) Phys Rev 142:327–333

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Academy of Finland (grants 121278 and 114100) and Turku University Foundation. The authors are grateful to SSRL for providing beam time and to Erik Nelson and colleagues for their excellent support during the beam time. We also thank Paul Ek for the ICP-MS measurements. Access to EMBL Hamburg (c/o DESY) was provided by the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 226716.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastassios C. Papageorgiou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haikarainen, T., Paturi, P., Lindén, J. et al. Magnetic properties and structural characterization of iron oxide nanoparticles formed by Streptococcus suis Dpr and four mutants. J Biol Inorg Chem 16, 799–807 (2011). https://doi.org/10.1007/s00775-011-0781-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0781-z

Keywords

Navigation