Skip to main content
Log in

Coupling Simulation Model of Transient Flow in Tubing and Unsteady Seepage in Reservoir During Hydraulic Fracturing with Unstable Injection

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The current research on hydraulic fracturing with unstable injection mainly focuses on laboratory experiments or field tests. However, due to the difference in scale, some conclusions derived from laboratory experiments are not suitable for field applications. Besides, there is little research on coupling analysis of transient flow in tubing and seepage in reservoir during fracturing. In this paper, the transient dynamic model of fluid in tubing and the model of unsteady seepage in reservoir were established, respectively. Furthermore, the simulation model was established by parameters coupling, which took into account the influence of reservoir breakdown on permeability. The variation of fluid pressure in the tubing of different scale was analyzed during unstable injection. Simultaneously, the amplitude frequency characteristics of fluid in the tubing were also compared between laboratory scale and field scale. The results show that the simulation model can be used to calculate the fluid pressure variation in the whole process of hydraulic fracturing. And the simulation results are basically consistent with the experimental results. The scale difference has a significant impact on the variation of fluid pressure in tubing. To improve the fluctuation amplitude of outlet pressure, it is necessary to design the frequency according to the amplitude frequency characteristics of the corresponding scale model. It can also be achieved by reducing the resistance coefficient. The research can provide guidance for parameters design in field applications. It is conducive to understand the difference between laboratory experiments and field applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Josifovic, A.; Roberts, J.J.; Corney, J.; Bruce, D.; Shipton, Z.K.: Reducing the environmental impact of hydraulic fracturing through design optimisation of positive displacement pumps. Energy 115, 1216–1233 (2016)

    Article  Google Scholar 

  2. Jordan,C.; Debotyam, M.; Iraj, S.: Variable pump rate fracturing leads to improved production in the marcellus shale. In: SPE Hydraulic Fracturing Technology Conference, Texas, USA, 1–11 (2016)

  3. Zhuang, L.; Kim, K.Y.; Jung, S.G.; Jung, S.G.; Diaz, M.; Min, K.B.; Zang, A.; Stephansson, O.; Zimmermann, G.; Yoon, J.S.; Hofmann, H.: Cyclic hydraulic fracturing of pocheon granite cores and its impact on breakdown pressure, acoustic emission amplitudes and injectivity. Int. J. Rock Mech. Min. Sci. 122, 1–8 (2019)

    Article  Google Scholar 

  4. Zhuang, L.; Jung, S.G.; Diaz, M.; Kim, K.Y.; Hofmann, H.; Min, K.B.; Zang, A.; Stephansson, O.; Zimmermann, G.; Yoon, J.S.: Laboratory true triaxial hydraulic fracturing of granite under six fluid injection schemes and grain-scale fracture observations. Rock Mech. Rock Eng. (2020). https://doi.org/10.1007/s00603-020-02170-8

    Article  Google Scholar 

  5. Zhuang, L.; Kim, K.Y.; Jung, S.G.; Diaz, M.; Diaz, M.: Effect of water infiltration, injection rate and anisotropy on hydraulic fracturing behavior of granite. Rock Mech. Rock Eng. 52(2), 575–589 (2019)

    Article  Google Scholar 

  6. Patel, S.M.; Sondergeld, C.H.; Rai, C.S.: Laboratory studies of hydraulic fracturing by cyclic injection. Int. J. Rock Mech. Min. Sci. 95, 8–15 (2017)

    Article  Google Scholar 

  7. Zhou, Z.L.; Zhang, G.Q.; Dong, H.R.; Liu, Z.B.; Nie, Y.X.: Creating a network of hydraulic fractures by cyclic pumping. Int. J. Rock Mech. Min. Sci. 97, 52–63 (2017)

    Article  Google Scholar 

  8. Zhou, Z.L.; Zhang, G.Q.; Xing, Y.K.; Fan, Z.Y.; Zhang, X.; Kasperczyk, D.: A laboratory study of multiple fracture initiation from perforation clusters by cyclic pumping. Rock Mech. Rock Eng 52(3), 827–840 (2019)

    Article  Google Scholar 

  9. Hou, B.; Chen, M.; Li, Z.; Wang, Y.G.; Diao, C.: Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs. Pet. Explor. Dev. 41(6), 833–838 (2014)

    Article  Google Scholar 

  10. Hou, B.; Zhang, R.; Tan, P.; Song, Y.; Fu, W.N.; Chang, Z.; Kao, J.: Characteristics of fracture propagation in compact limestone formation by hydraulic fracturing in central Sichuan. China. J. Nat. Gas Sci. Eng. 57, 122–134 (2018)

    Article  Google Scholar 

  11. Li, Q.; Lin, B.; Zhai, C.: The effect of pulse frequency on the fracture extension during hydraulic fracturing. J. Nat. Gas Sci. Eng. 21, 296–303 (2014)

    Article  Google Scholar 

  12. Zhai, C.; Yu, X.; Xiang, X.; Li, Q.G.; Wu, S.L.; Xu, J.Z.: Experimental study of pulsating water pressure propagation in CBM reservoirs during pulse hydraulic fracturing. J. Nat. Gas Sci. Eng. 25, 15–22 (2015)

    Article  Google Scholar 

  13. Xu, J.Z.; Zhai, C.; Lei, Q.: Mechanism and application of pulse hydraulic fracturing in improving drainage of coalbed methane. J. Nat. Gas Sci. Eng. 40, 79–90 (2017)

    Article  Google Scholar 

  14. Zang, A.; Stephansson, O.; Stenberg, L.; Plenkers, K.; Specht, S.; Milkereit, C.; Kwiatek, G.; Dresen, G.; Zimmermann, G.; Dahm, T.: Hydraulic fracture monitoring in hard rock at 410 m depth with an advanced fluid-injection protocol and extensive sensor array. Geophys. J. Int. 208(2), 790–813 (2017)

    Article  Google Scholar 

  15. Hofmann, H.; Zimmermann, G.; Farkas, M.; Huenges, E.; Zang, A.; Leonhardt, M.; Kwiatek, G.; Patricia, M.G.; Min, B.M.; KB, Fokker P, Westaway, R, Bethmann F, Meier P, Yoon KS, Choi JW, Lee TJ, Kim KY, : First field application of cyclic soft stimulation at the Pohang Enhanced Geothermal System site in Korea Geophys. J. Int 217(2), 926–949 (2019)

    Google Scholar 

  16. Yoon, J.S.; Zimmermann, G.; Zang, A.: Numerical investigation on stress shadowing in fluid injection-induced fracture propagation in naturally fractured geothermal reservoirs. Rock Mech. Rock Eng. 48(4), 1439–1454 (2015)

    Article  Google Scholar 

  17. Yoon, J.S.; Zimmermann, G.: Zang, A: Discrete element modeling of cyclic rate fluid injection at multiple locations in naturally fractured reservoirs. Int. J. Rock Mech. Min. Sci. 74, 15–23 (2015)

    Article  Google Scholar 

  18. Tong, S.K.; Gao, D.L.; Yue, Y.F.: Dynamic response of coiled tubing perforation under unstable fluid injection. Arab. J. Sci. Eng. 44(12), 10467–10480 (2019)

    Article  Google Scholar 

  19. Zou, J.P.; Chen, W.Z.; Yuan, J.Q.; Yang, D.S.; Yang, J.P.: 3-D numerical simulation of hydraulic fracturing in a CBM reservoir. J. Nat. Gas Sci. Eng. 37, 386–396 (2017)

    Article  Google Scholar 

  20. Liu, H.; Zhang, G.M.; Zhang, J.; Biao, F.J.; Wu, H.A.; Wang, X.X.: Friction loss calculation and surface pressure prediction in oil well hydraulic fracturing. Chin. J. of Rock Mech. Eng. 29, 2833–2839 (2010)

    Google Scholar 

  21. Wu, Y.; Huang, Z.; Zhao, K.; Zeng, W.; Gu, Q.X.: Unsteady seepage solutions for hydraulic fracturing around vertical wellbores in hydrocarbon reservoirs. Int. J. Hydrog. Energy. 45(16), 9496–9503 (2020)

    Article  Google Scholar 

  22. He, P.; Xiong, J.Y.; Lu, Z.H.; Pan, L.H.; Qin, D.W.: Study of Pulse wave propagation and attenuation mechanism in shale reservoirs during pulse hydraulic fracturing. Arab. J. Sci. Eng. 43(11), 6509–6522 (2018)

    Article  Google Scholar 

  23. Liu, W.C.; Liu, Y.W.; Niu, C.C.; Han, G.F.; Wan, Y.Z.: Numerical investigation of a coupled moving boundary model of radial flow in low-permeable stress-sensitive reservoir with threshold pressure gradient. Chin. Phys. B. 25(2), 262–270 (2016)

    Google Scholar 

  24. Ghidaoui, M.S.; Zhao, M.; McInnis, D.A.; Axworthy, D.H.: A review of water hammer theory and practice. Appl. Mech. Rev. 58(1), 49–76 (2005)

    Article  Google Scholar 

  25. Liang, T.B.; Yang, Z.; Zhou, F.J.; Liu, Z.Y.; Qu, H.Y.; Yang, K.: A new approach to predict field-scale performance of friction reducer based on laboratory measurements. J. Petrol. Sci. Eng. 159, 927–933 (2017)

    Article  Google Scholar 

  26. Bergant, A.; Simpson, A.R.; Vitkovsky, J.: Developments in unsteady pipe flow friction modeling. J. Hydraul. Res. 39, 249–257 (2001)

    Article  Google Scholar 

  27. Vitkovsky, J.; Lambert, M.; Simpson, A.; Bergant, A.: Advances in unsteady friction modelling in transient pipe flow. In: The 8th International Conference on Pressure Surges, Hague Netherlands, 1–14 (2000)

  28. Sampath, K.H.S.M.; Perera, M.S.A.; Ranjith, P.G.: Theoretical overview of hydraulic fracturing break-down pressure. J. Nat. Gas Sci. Eng. 58, 251–265 (2018)

    Article  Google Scholar 

  29. Liu, Y.K.; Chang, L.P.; Zhou, F.B.; Tan, D.S.; Liu, L.; Kang, J.H.; Tian, H.: Numerical modeling of gas flow in deformed well casing for the prediction of local resistance coefficients pertinent to longwall mining and its engineering evaluation. Environ. Earth Sci. 76(20), 1–15 (2017)

    Google Scholar 

  30. Wahba, E.M.: On the two-dimensional characteristics of laminar fluid transients in viscoelastic pipes. J. of Fluids and Struct. 68, 113–124 (2017)

    Article  Google Scholar 

  31. Liu, C.F.; Wu, H.M.; Li, F.; Yang, A.M.: Parallel fourth-order Runge-Kutta method to solve differential equations. Int. Conf. Inf. Comput. Appl. 7030, 192–199 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from Postgraduate Innovation Funding Project of Hebei Province (No. CXZZBS2020052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimin Dong.

Appendices

Appendix A: Derivation of Mass Conservation Equation

As shown in Fig. 1, based on the principle of mass conservation, the difference between the inflow and outflow mass of the control unit is equal to the mass variation in it within the same unit time.

$$ \frac{{\partial \left( {\rho_{s} A} \right)}}{\partial t} + \frac{{\partial \left( {\rho_{s} v_{s} A} \right)}}{\partial z} = 0 $$
(26)

where A is the cross-sectional area of the tubing, m2.

According to the definition of substantial (material) derivative [24], the following formula can be obtained:

$$ \frac{dA}{{dt}} = \frac{\partial A}{{\partial t}} + v_{s} \frac{\partial A}{{\partial z}} $$
(27)
$$ \frac{{d\rho_{s} }}{dt} = \frac{{\partial \rho_{s} }}{\partial t} + v_{s} \frac{{\partial \rho_{s} }}{\partial z} $$
(28)
$$ \frac{{dp_{s} }}{dt} = \frac{{\partial p_{s} }}{\partial t} + v_{s} \frac{{\partial p_{s} }}{\partial z} $$
(29)

Substitute Eqs. (27) and (28) into Eq. (26)

$$ \frac{{\partial v_{s} }}{\partial z} + \frac{1}{{\rho_{s} }}\frac{{d\rho_{s} }}{dt} + \frac{1}{A}\frac{dA}{{dt}} = 0 $$
(30)

The state equation of the fluid is as follows

$$ \frac{{dp_{s} }}{{d\rho_{s} }} = \frac{K}{{\rho_{s} }} $$
(31)

The following formula is obtained by transforming Eq. (31):

$$ \frac{1}{{\rho_{s} }}\frac{{d\rho_{s} }}{dt} = \frac{1}{K}\frac{dp}{{dt}} $$
(32)

The equilibrium relation between the pressure force and the circumferential stress force per unit pipe length can be expressed as [24]

$$ Ddp = 2e_{d} d\sigma_{\theta } $$
(33)

where σ θ is the circumferential stress in the tubing, MPa.

The elastic stress–strain relation

$$ d\varepsilon = \frac{{d\sigma_{\theta } }}{{E_{0} }} $$
(34)

where

$$ {\text{d}}\varepsilon = \frac{dD}{D} $$
(35)
$$ \frac{dA}{A} = \frac{2dD}{D} $$
(36)

Substitute Eqs. (34), (35) and (36) into Eq. (33):

$$ \frac{1}{A}\frac{dA}{{dt}} = \frac{D}{{eE_{0} }}\frac{dp}{{dt}} $$
(37)

Substituting Eqs. (32) and (37) into Eq. (30), the following formula can be obtained:

$$ \frac{1}{K}\frac{{dp_{s} }}{dt}\left( {1 + \frac{KD}{{E_{0} e_{d} }}} \right) + \frac{{\partial v_{s} }}{\partial z} = 0 $$
(38)

According to Eq. (38), the propagation velocity of pressure wave can be expressed as

$$ c^{2} = \frac{{\frac{K}{{\rho_{s} }}}}{{1 + \frac{KD}{{E_{0} e_{d} }}}} $$
(39)

Substituting Eqs. (29) and (39) into Eq. (38)

$$ \rho_{s} c^{2} \frac{{\partial v_{s} }}{\partial z} + \frac{{\partial p_{s} }}{\partial t} + v_{s} \frac{{\partial p_{s} }}{\partial z} = 0 $$
(40)

Appendix B: Numerical Simulation Method

In order to facilitate programming, the discretized Eqs. (22), (23), and (24) are written as follows:

$$ dy\left( 1 \right) = - \rho_{0} e^{{C_{L} (p_{s}^{i} - p_{0} )}} c^{2} \frac{{v_{s}^{i + 1} - v_{s}^{i - 1} }}{2\Delta z} - v_{s}^{i} \frac{{p_{s}^{i + 1} - p_{s}^{i - 1} }}{2\Delta z} $$
(41)
$$ \begin{gathered} dy\left( 2 \right) = \frac{1}{{1 + k_{3} }}\left\{ {g\sin \beta - k_{3} c \times sign(v_{s}^{i} )\left| {\frac{{v_{s}^{i + 1} - v_{s}^{i - 1} }}{2\Delta z}} \right|} \right. \hfill \\ - \frac{{f_{s} v_{s}^{i} \left| {v_{s}^{i} } \right|}}{2D} - \frac{1}{{\rho_{0} e^{{C_{L} (p_{s}^{i} - p_{0} )}} }}\frac{{p_{s}^{i + 1} - p_{s}^{i - 1} }}{2\Delta z} - \left. {v_{s}^{i} \frac{{v_{s}^{i + 1} - v_{s}^{i - 1} }}{2\Delta z}} \right\} \hfill \\ \end{gathered} $$
(42)
$$ dy\left( 3 \right) = \eta (\frac{{p_{r}^{j + 1} - 2p_{r}^{j} + p_{r}^{j - 1} }}{{\Delta r^{2} }} + \frac{1}{{0.5d_{w} + j\Delta r}}\frac{{p_{r}^{j + 1} - p_{r}^{j - 1} }}{2\Delta r}) $$
(43)

where y(1) represents ps. y(2) represents vs. y(3) represents pr.

The fourth-order-accurate Runge–Kutta method is then used to integrate Eqs. (41), (42) and (43) in time. This method has good stability and convergence. The calculation formula is as follows [31]:

$$ {\text{y}}\left( {m + 1} \right) = {\text{y}}\left( m \right) + \frac{{\Delta t\left( {k_{1} + 2k_{2} + 2k_{3} + k_{4} } \right)}}{6} $$
(44)

where

$$ \left\{ {\begin{array}{*{20}l} {{\text{k}}_{{1}} = f\left( {t(m),y(m)} \right)} \hfill \\ {k_{2} = f\left( {t(m) + \frac{\Delta t}{2},y(m) + \frac{\Delta t}{2}k_{1} } \right)} \hfill \\ {k_{3} = f\left( {t(m) + \frac{\Delta t}{2},y(m) + \frac{\Delta t}{2}k_{2} } \right)} \hfill \\ {k_{4} = f\left( {t(m) + \Delta t,y(m) + \Delta tk_{3} } \right)} \hfill \\ \end{array} } \right. $$
(45)

where m is the time node. △t is the time step. f(t,y) represents dy.

The initial conditions are as follows

$$ y = \left[ {p_{s0} + \rho_{s} gz\sin \beta , \, 0, \, p_{e} } \right] $$
(46)

At the end of each time step, the seepage velocity of fluid in the reservoir is calculated according to the following formula:

$$ v_{r}^{j} = - \frac{{K_{d} }}{\mu }\frac{{p_{r}^{j + 1} - p_{r}^{j - 1} }}{2\Delta r} $$
(47)

The numerical solution follows the flowchart shown in Fig. 3. The calculation formulas in each time step are shown above.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Dong, S. Coupling Simulation Model of Transient Flow in Tubing and Unsteady Seepage in Reservoir During Hydraulic Fracturing with Unstable Injection. Arab J Sci Eng 47, 10981–10991 (2022). https://doi.org/10.1007/s13369-021-05535-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05535-5

Keywords

Navigation