Skip to main content
Log in

Influence factors of the numerical model build-up on fluid sloshing

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

Abstract

It is important to predict fluid sloshing in cryogenic fuel storage tanks with an accurate numerical model. In the present paper, a computational fluid dynamics (CFD) model was established to simulate fluid sloshing. The fluid sloshing experiments in an apparent vessel were adopted to be the benchmark and used to validate the numerical model. As most of investigations were conducted with some certain model settings, few are involved on the influence factor on numerical model build-up. Based on the selected sloshing experiments, effects of the numerical time step and phase change factor on fluid sloshing were investigated. The results showed that the time steps of 0.001 and 0.002 s and the phase change factor of 0.1 s−1 could meet the requirement of fluid sloshing prediction. With some valuable conclusions being obtained, the present study may supply some effective references for numerical model building on fluid sloshing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

amplitude of the excitation

C 1ε, C 2ε, C μ :

calculation model constant

E :

te]energy term

f :

excitation frequency

F vol :

volume force

g :

gravity acceleration (m/s2)

G b :

generation of turbulence kinetic energy caused by buoyancy

G k :

generation of turbulence kinetic energy due to the mean velocity

hpch :

latent heat (kJ/kg)

k :

kinetic energy, thermal conductivity

r :

time parameter

S h :

energy source term

S m :

mass source term

T :

temperature (K)

t :

sloshing time (s)

ν :

velocity vector

Y M :

contribution of the fluctuation dilatation

α :

void fraction

κ :

surface curvature (m−l)

ρ :

density (kg/m3)

θ :

angle

ε :

kinetic energy rate of dissipation

σ lv :

interfacial surface tension

σ k, σ ε :

turbulent Prandtl number

μ :

dynamic viscosity

q :

liquid or vapor phase

l:

liquid

sat:

saturation

v:

vapor

References

  • Battaglia, L., Cruchaga, M., Storti, M., D’Elía, J., Núñez Aedo, J., Reinoso, R. 2018. Numerical modelling of 3D sloshing experiments in rectangular tanks. Appl Math Model, 59: 357–378.

    Article  MathSciNet  Google Scholar 

  • Brackbill, J. U., Kothe, D. B., Zemach, C. 1992. A continuum method for modeling surface tension. J Comp Phys, 100: 335–354.

    Article  MathSciNet  Google Scholar 

  • Brizzolara, S., Savio, L., Viviani, M., Chen, Y., Temarel, P., Couty, N., Hoflack, S., Diebold, L., Moirod, N., Iglesias, A. S. 2011. Comparison of experimental and numerical sloshing loads in partially filled tanks. Ships Offshore Struc, 6: 15–43.

    Article  Google Scholar 

  • Chen, Y. G., Djidjeli, K., Price, W. G. 2009. Numerical simulation of liquid sloshing phenomena in partially filled containers. Comput Fluids, 38: 830–842.

    Article  Google Scholar 

  • Chen, Z., Zong, Z., Li, H. T., Li, J. 2013. An investigation into the pressure on solid walls in 2D sloshing using SPH method. Ocean Eng, 59: 129–141.

    Article  Google Scholar 

  • Das, S. P., Hopfinger, E. J. 2009. Mass transfer enhancement by gravity waves at a liquid-vapour interface. Int J Heat Mass Tran, 52: 1400–1411.

    Article  Google Scholar 

  • Djavareshkian, M. H., Khalili, M. 2006. Simulation of sloshing with the volume of fluid method. Fluid Dynamics & Materials Processing, 2: 299–308.

    Google Scholar 

  • Elahi, R., Passandideh-Fard, M., Javanshir, A. 2015. Simulation of liquid sloshing in 2D containers using the volume of fluid method. Ocean Eng, 96: 226–244.

    Article  Google Scholar 

  • Grotle, E. L., Æsøy, V. 2018. Dynamic modelling of the thermal response enhanced by sloshing in marine LNG fuel tanks. Appl Therm Eng, 135: 512–520.

    Article  Google Scholar 

  • Grotle, E., Æsøy, V. 2017. Numerical simulations of sloshing and the thermodynamic response due to mixing. Energies, 10: 1338.

    Article  Google Scholar 

  • Gu, X., Wen, J., Tian, J., Li, C., Liu, H., Wang, S. 2019. Role of gravity in condensation flow of R1234ze(E) inside horizontal mini/macro-channels. Exp Comput Multiphase Flow, 1: 219–229.

    Article  Google Scholar 

  • Himeno, T., Ohashi, A., Anii, K., Daichi, H., Sakuma, Y., Watanabe, T., Inoue, C., Umemura, Y., Negishi, H., Nonaka, S. 2018. Investigation on phase change and pressure drop enhanced by violent sloshing of cryogenic fluid. In: Proceedings of the 2018 Joint Propulsion Conference, AIAA 2018-4755.

  • Himeno, T., Sugimori, D., Ishikawa, K., Umemura, Y., Uzawa, S., Inoue, C., Watanabe, T., Nonaka, S., Naruo, Y., Inatani, Y., et al. 2011. Heat exchange and pressure drop enhanced by sloshing. In: Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2011-5682.

  • Lee, S. J., Kim, M. H., Lee, D. H., Kim, J. W., Kim, Y. H. 2007. The effects of LNG-tank sloshing on the global motions of LNG carriers. Ocean Eng, 34: 10–20.

    Article  Google Scholar 

  • Lind, S. J., Stansby, P. K., Rogers, B. D. 2016. Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics (SPH). J Comput Phys, 309: 129–147

    Article  MathSciNet  Google Scholar 

  • Liu, D., Lin, P. 2008. A numerical study of three-dimensional liquid sloshing in tanks. J Comput Phys, 227: 3921–3939.

    Article  Google Scholar 

  • Liu, Z., Feng, Y., Cui, J., Lei, G., Li, Y. 2019a. Effect of excitation types on sloshing dynamic characteristics in a cryogenic liquid oxygen tank. J Aerospace Eng, 32: 04019096.

    Article  Google Scholar 

  • Liu, Z., Feng, Y., Lei, G., Li, Y. 2018. Fluid thermal stratification in a non-isothermal liquid hydrogen tank under sloshing excitation. Int J Hydrogen Energ, 43: 22622–22635.

    Article  Google Scholar 

  • Liu, Z., Feng, Y., Lei, G., Li, Y. 2019b. Fluid sloshing dynamic performance in a liquid hydrogen tank. Int J Hydrogen Energ, 44: 13885–13894.

    Article  Google Scholar 

  • Liu, Z., Feng, Y., Lei, G., Li, Y. 2019c. Hydrodynamic performance on sloshing process in a liquid oxygen tank under intermittent excitation. Cryogenics, 98: 92–101.

    Article  Google Scholar 

  • Liu, Z., Feng, Y., Lei, G., Li, Y. 2019d. Hydrodynamic performance in a sloshing liquid oxygen tank under different initial liquid filling levels. Aerospace Sci Tech, 85: 544–555.

    Article  Google Scholar 

  • Liu, Z., Feng, Y., Lei, G., Li, Y. 2019e. Sloshing behavior under different initial liquid temperatures in a cryogenic fuel tank. J Low Temp Phys, 196: 347–363

    Article  Google Scholar 

  • Liu, Z., Feng, Y., Lei, G., Li, Y. 2019f. Sloshing hydrodynamic performance in cryogenic liquid oxygen tanks under different amplitudes. Appl Therm Eng, 150: 359–371.

    Article  Google Scholar 

  • Liu, Z., Feng, Y., Liu, Y., Yan, J., Li, Y. 2020. Effect of external heat input on fluid sloshing dynamic performance in a liquid oxygen tank. Int J Aeronaut Space Sci, 21: 879–888.

    Article  Google Scholar 

  • Liu, Z., Li, C. 2018. Influence of slosh baffles on thermodynamic performance in liquid hydrogen tank. J Hazard Mater, 346: 253–262.

    Article  Google Scholar 

  • Liu, Z., Li, Y., Jin, Y. 2016. Pressurization performance and temperature stratification in cryogenic final stage propellant tank. Appl Therm Eng, 106: 211–220.

    Article  Google Scholar 

  • Liu, Z., Li, Y., Jin, Y., Li, C. 2017. Thermodynamic performance of pre-pressurization in a cryogenic tank. Appl Therm Eng, 112: 801–810.

    Article  Google Scholar 

  • Liu, Z., Wang, L., Jin, Y., Li, Y. 2015. Development of thermal stratification in a rotating cryogenic liquid hydrogen tank. Int J Hydrogen Energ, 40: 15067–15077.

    Article  Google Scholar 

  • Loots, E., Pastoor, W., Buchner, B., Tveitnes, T. 2004. The numerical simulation of LNG sloshing with an improved volume of fluid method. In: Proceedings of the ASME 2004 23rd International Conference on Offshore Mechanics and Arctic Engineering, OMAE2004-51085.

  • Ludwig, C., Dreyer, M. E., Hopfinger, E. J. 2013. Pressure variations in a cryogenic liquid storage tank subjected to periodic excitations. Int J Heat Mass Tran, 66: 223–234.

    Article  Google Scholar 

  • Ming, P., Duan, W. 2010. Numerical simulation of sloshing in rectangular tank with VOF based on unstructured grids. J Hydrodyn, 22: 856–864.

    Article  Google Scholar 

  • Oliveira, J. M., Kirk, D. R., Schallhorn, P. 2009. Analytical model for cryogenic stratification in a rotating and reduced-gravity environment. J Spacecraft Rockets, 46: 459–465.

    Article  Google Scholar 

  • Shao, J. R., Li, H. Q., Liu, G. R., Liu, M. B. 2012. An improved SPH method for modeling liquid sloshing dynamics. Comput Struct, 100–101: 18–26.

    Article  Google Scholar 

  • Wu, C. H., Chen B. F. 2012. Transient response of sloshing fluid in a three dimensional tank. J Mar Sci Technol, 20: 26–37.

    Article  Google Scholar 

  • Zhang, Y., Wan, D., Takanori, H. 2014. Comparative study of MPS method and level-set method for sloshing flows. J Hydrodyn, 26: 577–585.

    Article  Google Scholar 

  • Zhou, R., Vergalla, M., Chintalapati, S., Kirk, D., Gutierrez, H. 2012. Experimental and numerical investigation of liquid slosh behavior using ground-based platforms. J Spacecraft Rockets, 49: 1194–1204.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (BK20180654), the National Natural Science Foundation of China (51806235) and the Research Fund of State Key Laboratory of Technologies in Space Cryogenic Propellants (SKLTSCP202012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhan Liu or Cui Li.

Ethics declarations

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Li, C. Influence factors of the numerical model build-up on fluid sloshing. Exp. Comput. Multiph. Flow 4, 435–444 (2022). https://doi.org/10.1007/s42757-020-0099-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-020-0099-6

Keywords

Navigation