Skip to main content
Log in

Sustainable Evaluation of Using Nano Zero-Valent Iron and Activated Carbon for Real Textile Effluent Remediation

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the performance of using two different adsorbents, nano-zero-valent iron (nZVI) and activated carbon (AC), was examined for the treatment of real textile effluents. The porous structure and chemical composition of the synthesized nZVI were detected via X-ray diffraction, scanning electron microscopy and EDX analysis. Batch adsorption studies were conducted to investigate the optimal operating conditions including pH, adsorbent dose, contact time and stirring rate for the removal of COD, TSS and color from real textile wastewater. At same optimal operating conditions, pH 6, dose 0.8 g/L, contact time 20 min and stirring rate 100 rpm, the experimental results showed distinctive removal efficiency by using AC reached to 78.8% for COD, 76.2% for TSS and 84% for color, while nZVI recorded relatively lower removal efficiency reached to 74.7% for COD, 72.6% for TSS and 80% for color. A comparison study between nZVI and AC was conducted to evaluate the potential of using the two sorbent materials based on technical and sustainable criteria using different multi-criteria decision-making methods: TOPSIS, AHP and SAW. The study concluded that generally AC is better than nZVI based on the established criteria and weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ghaly, A.E.; Ananthashankar, R.; Alhattab, M.; Ramakrishnan, V.V.: Production, characterization and treatment of textile effluents: a critical review. J. Chem. Eng. Process. Technol. 5(1), 1–19 (2014)

    Google Scholar 

  2. Donkadokula, N.Y., Kola, A.K., Naz, I., Saroj, D.: A review on advanced physico-chemical and biological textile dye wastewater treatment techniques. Rev. Environ. Sci. Bio/Technol. 19, 1–18 (2020)

    Article  Google Scholar 

  3. Karam, A.; Mostafa, M.K.; Elawwad, A.; Zaher, K.; Mahmoud, A.S.; Peters, R.W.: Small-Pilot Plant for Tertiary Treatment of Domestic Wastewater Using Algal Photo-Bioreactor, with Artificial Intelligence. In: 2019. AIChE

  4. Elawwad, A., Karam, A., Zaher, K.: Using an algal photo-bioreactor as a polishing step for secondary treated wastewater. Pol. J. Environ. Stud. 26(4), 1493–1500 (2017)

    Article  Google Scholar 

  5. Karam, A., Bakhoum, E.S., Zaher, K.: Coagulation/flocculation process for textile mill effluent treatment: experimental and numerical perspectives. Int. J. Sustain. Eng. 14, 1–13 (2020)

    Google Scholar 

  6. Cinperi, N.C.; Ozturk, E.; Yigit, N.O.; Kitis, M.: Treatment of woolen textile wastewater using membrane bioreactor, nanofiltration and reverse osmosis for reuse in production processes. J. Clean. Prod. 223, 837–848 (2019)

    Article  Google Scholar 

  7. Bilińska, L.; Blus, K.; Gmurek, M.; Ledakowicz, S.: Coupling of electrocoagulation and ozone treatment for textile wastewater reuse. Chem. Eng. J. 358, 992–1001 (2019)

    Article  Google Scholar 

  8. Sathya, U.; Nithya, M.; Balasubramanian, N.: Evaluation of advanced oxidation processes (AOPs) integrated membrane bioreactor (MBR) for the real textile wastewater treatment. J. Environ. Manag. 246, 768–775 (2019)

    Article  Google Scholar 

  9. Mor, S.; Chhavi, M.K.; Sushil, K.K.; Ravindra, K.: Assessment of hydrothermally modified fly ash for the treatment of methylene blue dye in the textile industry wastewater. Environ. Dev. Sustain. 20(2), 625–639 (2018)

    Article  Google Scholar 

  10. Hynes, N.R.J., Kumar, J.S., Kamyab, H., Sujana, J.A.J., Al-Khashman, O.A., Kuslu, Y., Ene, A., Suresh, B.: Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector-A comprehensive review. J. Clean. Prod. 272, 122636 (2020)

    Article  Google Scholar 

  11. Karam, A.; Zaher, K.; Mahmoud, A.S.: Comparative studies of using nano zerovalent iron, activated carbon, and green synthesized nano zerovalent iron for textile wastewater color removal using artificial intelligence, regression analysis, adsorption isotherm, and kinetic studies. Air Soil Water Res. 13, 1178622120908273 (2020)

    Article  Google Scholar 

  12. Parvaresh, V., Hashemi, H., Khodabakhshi, A., Sedehi, M.: Removal of dye from synthetic textile wastewater using agricultural wastes and determination of adsorption isotherm. Desalin. Water Treat. 111, 345–350 (2018)

    Article  Google Scholar 

  13. Wakkel, M.; Khiari, B.; Zagrouba, F.: Textile wastewater treatment by agro-industrial waste: equilibrium modelling, thermodynamics and mass transfer mechanisms of cationic dyes adsorption onto low-cost lignocellulosic adsorbent. J. Taiwan Inst. Chem. Eng. 96, 439–452 (2019)

    Article  Google Scholar 

  14. Sdiri, A.T.; Higashi, T.; Jamoussi, F.: Adsorption of copper and zinc onto natural clay in single and binary systems. Int. J. Environ. Sci. Technol. 11(4), 1081–1092 (2014)

    Article  Google Scholar 

  15. Gautam, A.K.; Singh, N.B.; Shukla, S.P.; Mohan, D.: Lead removal efficiency of various natural adsorbents (Moringa oleifera, Prosopis juliflora, peanut shell) from textile wastewater. SN Appl. Sci. 2(2), 288 (2020)

    Article  Google Scholar 

  16. da Silva, D.C.C.; de Abreu Pietrobelli, J.M.T.: Residual biomass of chia seeds (Salvia hispanica) oil extraction as low cost and eco-friendly biosorbent for effective reactive yellow B2R textile dye removal: characterization, kinetic, thermodynamic and isotherm studies. J. Environ. Chem. Eng. 7(2), 103008 (2019)

    Article  Google Scholar 

  17. Corda, N.C., Kini, M.S.: A Review on Adsorption of Cationic Dyes using Activated Carbon. In: EDP Sciences, pp. 02022. (2018)

  18. Ahmad, A.A.; Hameed, B.H.: Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo-based activated carbon. J. Hazard. Mater. 172(2–3), 1538–1543 (2009)

    Article  Google Scholar 

  19. Anirudhan, T.S.; Sreekumari, S.S.: Adsorptive removal of heavy metal ions from industrial effluents using activated carbon derived from waste coconut buttons. J. Environ. Sci. 23(12), 1989–1998 (2011)

    Article  Google Scholar 

  20. Kalderis, D.; Koutoulakis, D.; Paraskeva, P.; Diamadopoulos, E.; Otal, E.; del Valle, J.O.; Fernández-Pereira, C.: Adsorption of polluting substances on activated carbons prepared from rice husk and sugarcane bagasse. Chem. Eng. J. 144(1), 42–50 (2008)

    Article  Google Scholar 

  21. El-Naas, M.H.; Al-Zuhair, S.; Alhaija, M.A.: Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon. J. Hazard. Mater. 173(1–3), 750–757 (2010)

    Article  Google Scholar 

  22. Aouni, A.; Lafi, R.; Hafiane, A.: Feasibility evaluation of combined electrocoagulation/adsorption process by optimizing operating parameters removal for textile wastewater treatment. Water Treat. 60, 10890 (2017)

    Google Scholar 

  23. Ruan, W.; Hu, J.; Qi, J.; Hou, Y.; Zhou, C.; Wei, X.: Removal of dyes from wastewater by nanomaterials: a review. Adv. Mater. Lett. 10(1), 09–20 (2019)

    Article  Google Scholar 

  24. Li, S.; Wang, W.; Liang, F.; Zhang, W.-X.: Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application. J. Hazard. Mater. 322, 163–171 (2017)

    Article  Google Scholar 

  25. Barreto-Rodrigues, M.; Silveira, J.; Zazo, J.A.; Rodriguez, J.J.: Synthesis, characterization and application of nanoscale zero-valent iron in the degradation of the azo dye Disperse Red 1. J. Environ. Chem. Eng. 5(1), 628–634 (2017)

    Article  Google Scholar 

  26. Arabi, S.; Sohrabi, M.R.: Removal of methylene blue, a basic dye, from aqueous solutions using nano-zerovalent iron. Water Sci. Technol. 70(1), 24–31 (2014)

    Article  Google Scholar 

  27. Yoon, K.P.; Hwang, C.-L.: Multiple Attribute Decision Making: An Introduction, Vol. 104. Sage Publications, New York (1995)

    Book  Google Scholar 

  28. Omann, I.: Multi-criteria decision aid as an approach for sustainable development analysis and implementation. na, (2004)

  29. Kamali, M.; Persson, K.M.; Costa, M.E.; Capela, I.: Sustainability criteria for assessing nanotechnology applicability in industrial wastewater treatment: current status and future outlook. Environ. Int. 125, 261–276 (2019)

    Article  Google Scholar 

  30. Topuz, E.; van Gestel, C.A.M.: An approach for environmental risk assessment of engineered nanomaterials using analytical hierarchy process (AHP) and fuzzy inference rules. Environ. Int. 92, 334–347 (2016)

    Article  Google Scholar 

  31. Ehrampoush, M.H.; Miri, M.; Momtaz, S.M.; Ghaneian, M.T.; Rafati, L.; Karimi, H.; Rahimi, S.: Selecting the optimal process for the removal of reactive red 198 dye from textile wastewater using analytical hierarchy process (AHP). Desalination and Water Treatment 57(56), 27237–27242 (2016)

    Article  Google Scholar 

  32. Dalvand, A.; Ehrampoush, M.H.; Ghaneian, M.T.; Mokhtari, M.; Ebrahimi, A.A.; Malek Ahmadi, R.; Mahvi, A.H.: Application of chemical coagulation process for direct dye removal from textile wastewater. J. Environ. Health Sustain. Dev. 2(3), 333–339 (2017)

    Google Scholar 

  33. Aragonés-Beltrán, P.; Mendoza-Roca, J.A.; Bes-Piá, A.; García-Melón, M.; Parra-Ruiz, E.: Application of multicriteria decision analysis to jar-test results for chemicals selection in the physical–chemical treatment of textile wastewater. J. Hazard. Mater. 164(1), 288–295 (2009)

    Article  Google Scholar 

  34. Pophali, G.R.; Chelani, A.B.; Dhodapkar, R.S.: Optimal selection of full scale tannery effluent treatment alternative using integrated AHP and GRA approach. Expert Syst. Appl. 38(9), 10889–10895 (2011)

    Article  Google Scholar 

  35. Visentin, C.; da Silva Trentin, A.W.; Braun, A.B.; Thomé, A.: Lifecycle assessment of environmental and economic impacts of nano-iron synthesis process for application in contaminated site remediation. J. Clean. Prod. 231, 307–319 (2019)

    Article  Google Scholar 

  36. Kim, M.H.; Jeong, I.T.; Park, S.B.; Kim, J.W.: Analysis of environmental impact of activated carbon production from wood waste. Environ. Eng. Res. 24(1), 117–126 (2018)

    Article  Google Scholar 

  37. Martins, F.; Machado, S.; Albergaria, T.; Delerue-Matos, C.: LCA applied to nano scale zero valent iron synthesis. Int. J. Life Cycle Assess. 22(5), 707–714 (2017)

    Article  Google Scholar 

  38. Gu, H.; Bergman, R.; Anderson, N.; Alanya-Rosenbaum, S.: Life cycle assessment of activated carbon from woody biomass. Wood Fiber Sci. 50(3), 229–243 (2018)

    Article  Google Scholar 

  39. Yuvakkumar, R.; Elango, V.; Rajendran, V.; Kannan, N.: Preparation and characterization of zero valent iron nanoparticles. Dig. J. Nanomater. Biostruct. 6(4), 1771–1776 (2011)

    Google Scholar 

  40. American Public Health Association; American Water Works Association; Water Pollution Control Federation; Water Environment Federation: Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, D.C (1920)

    Google Scholar 

  41. Hwang, C.-L., Yoon, K.: Multiple attribute decision making: a state of the art survey. Lect. Notes Econ. Math. Syst. 186(1), 289–289 (1981)

    MATH  Google Scholar 

  42. Méndez, M., Galván, B., Salazar, D., Greiner, D.: Multiple-objective genetic algorithm using the multiple criteria decision making method topsis. In: Multiobjective Programming and Goal Programming, Lecture Notes inEconomics and Mathematical Systems, vol. 628, pp. 145–154. Springer, Berlin, Heidelberg (2009)

  43. Saaty, T.L.: The Analytic Hierarchy Process Mcgraw Hill. New York. Agric. Econ. Rev. 70, 97–98 (1980)

    Google Scholar 

  44. Mahmoodzadeh, S.; Shahrabi, J.; Pariazar, M.; Zaeri, M.S.: Project selection by using fuzzy AHP and TOPSIS technique. World Acad. Sci. Eng. Technol. 30, 333–338 (2007)

    Google Scholar 

  45. Zeng, G.; Jiang, R.; Huang, G.; Xu, M.; Li, J.: Optimization of wastewater treatment alternative selection by hierarchy grey relational analysis. J. Environ. Manag. 82(2), 250–259 (2007)

    Article  Google Scholar 

  46. Ljungberg, L.Y.: Materials selection and design for development of sustainable products. Mater. Des. 28(2), 466–479 (2007)

    Article  Google Scholar 

  47. Nebel, B.: White Paper–Life Cycle Assessment and the Building and Construction Industry. Prepared for Beacon Pathway Limited, Auckland (2006)

    Google Scholar 

  48. Mora, E.P.: Life cycle, sustainability and the transcendent quality of building materials. Build. Environ. 42(3), 1329–1334 (2007)

    Article  Google Scholar 

  49. Meda, L.; Marra, G.; Galfetti, L.; Severini, F.; De Luca, L.: Nano-aluminum as energetic material for rocket propellants. Mater. Sci. Eng. C 27(5–8), 1393–1396 (2007)

    Article  Google Scholar 

  50. Wang, T.; Jin, X.; Chen, Z.; Megharaj, M.; Naidu, R.: Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci. Total Environ. 466–467, 210–213 (2014). https://doi.org/10.1016/j.scitotenv.2013.07.022

    Article  Google Scholar 

  51. Arabi, S.; Sohrabi, M.R.: Experimental design and response surface modelling for optimization of vat dye from water by nano zero valent iron (NZVI). Acta Chim. Slov. 60(4), 853–860 (2014)

    Google Scholar 

  52. Dada, A.O., Adekola, F.A., Odebunmi, E.O.: Kinetics, isotherms and thermodynamics studies of sorption of Cu2+ onto novel zerovalent iron nanoparticles. Covenant J. Phys. Life Sci. 2(1), 119–133 (2014)

    Google Scholar 

  53. Yang, G.C.C.; Lee, H.-L.: Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Res. 39(5), 884–894 (2005)

    Article  Google Scholar 

  54. Kannan, N.; Sundaram, M.M.: Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes Pigm. 51(1), 25–40 (2001)

    Article  Google Scholar 

  55. Singh, S.; Sidhu, G.K.; Singh, H.: Removal of methylene blue dye using activated carbon prepared from biowaste precursor. Indian Chem. Eng. 61(1), 28–39 (2019)

    Google Scholar 

  56. Arshadi, M.; Abdolmaleki, M.K.; Mousavinia, F.; Foroughifard, S.; Karimzadeh, A.: Nano modification of NZVI with an aquatic plant Azolla filiculoides to remove Pb (II) and Hg (II) from water: aging time and mechanism study. J. Colloid Interface Sci. 486, 296–308 (2017)

    Article  Google Scholar 

  57. Ahmad, M.A.; Ahmad, N.; Bello, O.S.: Adsorptive removal of malachite green dye using durian seed-based activated carbon. Water Air Soil Pollut. 225(8), 2057 (2014)

    Article  Google Scholar 

  58. Arena, N.; Lee, J.; Clift, R.: Life Cycle Assessment of activated carbon production from coconut shells. J. Clean. Prod. 125, 68–77 (2016)

    Article  Google Scholar 

  59. He, F.; Zhao, D.; Liu, J.; Roberts, C.B.: Stabilization of Fe−Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind. Eng. Chem. Res. 46(1), 29–34 (2007)

    Article  Google Scholar 

  60. Ren, J.; Yao, M.; Woo, Y.C.; Tijing, L.D.; Kim, J.-H.; Shon, H.K.: Recyclable nanoscale zerovalent iron (nZVI)-immobilized electrospun nanofiber composites with improved mechanical strength for groundwater remediation. Compos. B Eng. 171, 339–346 (2019)

    Article  Google Scholar 

  61. Khalil, A.M.E. et al.: Treatment and regeneration of nano-Scale zero-Valent iron spent in water remediation. Evergreen: Joint J. Novel Carbon Resour. Sci. Green Asia Strat. 4(1):21–28 (2017)

  62. Pasinszki, T.; Krebsz, M.: Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. Nanomaterials 10(5), 917 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Nile University (NU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed K. Badawi.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflict of interest with respect to the research, authorship and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badawi, A.K., Bakhoum, E.S. & Zaher, K. Sustainable Evaluation of Using Nano Zero-Valent Iron and Activated Carbon for Real Textile Effluent Remediation. Arab J Sci Eng 46, 10365–10380 (2021). https://doi.org/10.1007/s13369-021-05349-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05349-5

Keywords

Navigation