Skip to main content
Log in

Tribological Properties of 10-Undecenoic Acid-Derived Schiff Base Lubricant Additives

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Four 10-undecenoic acid-based Schiff bases were synthesized by condensation of methyl 11-(2-aminoethylthio) undecanoate with various aromatic aldehydes. Synthesized compounds were characterized by spectral techniques and evaluated for their tribological and antioxidant performances in biolubricant base oil, namely epoxy 2-ethyl hexyl esters of karanja fatty acids. The tribological test results indicate that all the synthesized thioethers containing Schiff bases act as good antiwear and extreme pressure additives. A significant reduction in wear scar diameter was observed at a very low concentration (0.6 wt%), whereas, at 1 wt% concentration, weld point enhancement observed from 160 to 230 kg. Quantum chemical calculations based on density functional theory for the interactions of Schiff bases with surfaces correlated with experimental wear data. Overall, the dimethoxy-substituted phenyl ring containing Schiff base was more effective in enhancing the antiwear and extreme pressure performance of base oil, whereas dihydroxy-substituted phenyl ring containing Schiff base exhibited good antioxidant property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cigno, E.; Magagnoli, C.; Pierce, M.S.; Iglesias, P.: Lubricating ability of two phosphonium-based ionic liquids as additives of a bio-oil for use in wind turbines gearboxes. Wear 376, 756–765 (2017)

    Article  Google Scholar 

  2. Li, J.; Li, Z.; Ren, T.; Zeng, X.; van der Heide, E.: Hydrolytic stability and tribological properties of N-containing heterocyclic borate esters as lubricant additives in rapeseed oil. Tribol. Int. 73, 101–107 (2014)

    Article  Google Scholar 

  3. Seymour, B.T.; Wright, R.A.; Parrott, A.C.; Gao, H.; Martini, A.; Qu, J.; Dai, S.; Zhao, B.: Poly (alkyl methacrylate) brush-grafted silica nanoparticles as oil lubricant additives: effects of alkyl pendant groups on oil dispersibility, stability and lubrication property. ACS Appl. Mater. Interfaces 9(29), 25038–25048 (2017)

    Article  Google Scholar 

  4. Singh, R.K.; Sharma, O.P.; Singh, A.K.: Evaluation of cellulose laurate esters for application as green biolubricant additives. Ind. Eng. Chem. Res. 53(25), 10276–10284 (2014)

    Article  Google Scholar 

  5. Tang, Z.; Li, S.: A review of recent developments of friction modifiers for liquid lubricants (2007–present). Curr. Opin. Solid. State Mater. 18(3), 119–139 (2014)

    Article  Google Scholar 

  6. Spikes, H.: Low and zero-sulphated ash, phosphorus and sulphur anti-wear additives for engine oils. Lubr. Sci. 20(2), 103–136 (2008)

    Article  Google Scholar 

  7. Jaiswal, V.; Gupta, S.R.; Rastogi, R.B.; Kumar, R.; Singh, V.P.: Evaluation of antiwear activity of substituted benzoylhydrazones and their copper (ii) complexes in paraffin oil as efficient low SAPS additives and their interactions with the metal surface using density functional theory. J. Mater. Chem. A. 3(9), 5092–5109 (2015)

    Article  Google Scholar 

  8. Jaiswal, V.; Rastogi, R.B.; Kumar, R.: Tribological studies of some SAPS free Schiff bases derived from 4-aminoantipyrine and aromatic aldehydes and their synergistic interaction with borate ester. J. Mater. Chem. A 2(27), 10424–10434 (2014)

    Article  Google Scholar 

  9. De Feo, M.; Minfray, C.; Bouchet, M.D.B.; Thiebaut, B.; Martin, J.M.: MoDTC friction modifier additive degradation: correlation between tribological performance and chemical changes. RSC. Adv. 5(114), 93786–93796 (2015)

    Article  Google Scholar 

  10. Khan, T.; Koide, S.; Tamura, Y.; Yamamoto, H.; Morina, A.; Neville, A.: Effects of using alternative extreme pressure (EP) and anti-wear (AW) additives with oxy-nitrided samples. Tribol. Lett. 66(1), 43 (2018)

    Article  Google Scholar 

  11. Kim, Y.W.; Chung, K.; Kim, N.S.; Hwang, D.H.; Cho, W.O.: Synergistic lubricating effect of several ashless dithiocarbamates with Mo-donor additives. Tribol. Int. 40(2), 397–404 (2007)

    Article  Google Scholar 

  12. Latha, P.P.; Singh, R.K.; Kukrety, A.; Saxena, R.C.; Bhatt, M.; Jain, S.L.: Poultry chicken feather derived biodegradable multifunctional additives for lubricating formulations. ACS. Sustain. Chem. Eng. 4(3), 999–1005 (2016)

    Article  Google Scholar 

  13. Liu, Z.; Li, J.; Knothe, G.; Sharma, B.K.; Jiang, J.: Improvement of diesel lubricity by chemically modified tung-oil-based fatty acid esters as additives. Energy Fuel 33(6), 5110–5115 (2019)

    Article  Google Scholar 

  14. Gusain, R.; Dhingra, S.; Khatri, O.P.: Fatty-acid-constituted halogen-free ionic liquids as renewable, environmentally friendly, and high-performance lubricant additives. Ind. Eng. Chem. Res. 55(4), 856–865 (2016)

    Article  Google Scholar 

  15. Xue, Q.; Liu, W.: Tribochemistry and the development of AW and EP oil additives—a review. Lubr. Sci. 7(1), 81–92 (1994)

    Article  Google Scholar 

  16. Scharf, T.W.; Prasad, S.V.: Solid lubricants: a review. J. Mater. Sci. 48(2), 511–531 (2013)

    Article  Google Scholar 

  17. Shah, F.U.; Glavatskih, S.; Antzutkin, O.N.: Boron in tribology: from borates to ionic liquids. Tribol. Lett. 51(3), 281–301 (2013)

    Article  Google Scholar 

  18. Gresham, R.M.: Lubricant additives-chemistry and applications. Tribol. Lubr. Technol. 60, 49 (2004)

    Google Scholar 

  19. Sun, Y.; Hu, L.; Xue, Q.: Tribological properties and action mechanism of N,N-dialkyl dithiocarbamate-derived S-hydroxyethyl borate esters as additives in rapeseed oil. Wear 266(9–10), 917–924 (2009)

    Article  Google Scholar 

  20. Lu, R.; Mori, S.; Kubo, T.; Nanao, H.: Effect of sulfur-containing additive on the decomposition of multialkylated cyclopentane oil on the nascent steel surface. Wear 267(9–10), 1430–1435 (2009)

    Article  Google Scholar 

  21. Cai, M.; Liang, Y.; Zhou, F.; Liu, W.: A novel imidazolium salt with antioxidation and anticorrosion dual functionalities as the additive in poly (ethylene glycol) for steel/steel contacts. Wear 306(1–2), 197–208 (2013)

    Article  Google Scholar 

  22. Zolotov, A.V.; Sipatrov, A.G.; Bartko, R.V.; Zolotov, V.A.; Kuzmina, G.N.; Parenago, O.P.; Ivanov, V.K.: Synergism of composition of nitrogen and sulfur-containing compounds as a tribological active additive to lubricants. J. Frict. Wear. 34(5), 385–390 (2013)

    Article  Google Scholar 

  23. Li, J.; Xu, X.; Wang, Y.; Ren, T.: Tribological studies on a novel borate ester containing benzothiazol-2-yl and disulfide groups as multifunctional additive. Tribol. Int. 43(5–6), 1048–1053 (2010)

    Article  Google Scholar 

  24. Danping, W.; Spikes, H.A.: The lubricity of diesel fuels. Wear 111(2), 217–235 (1986)

    Article  Google Scholar 

  25. Rastogi, R.B.; Maurya, J.L.; Jaiswal, V.: Zero SAPS and ash free antiwear additives: Schiff bases of salicylaldehyde with 1, 2-phenylenediamine, 1, 4-phenylenediamine, and 4, 4′-diaminodiphenylenemethane and their synergistic interactions with borate ester. Tribol. Trans. 56(4), 592–606 (2013)

    Article  Google Scholar 

  26. Singh, R.K.; Pandey, S.; Saxena, R.C.; Thakre, G.D.; Atray, N.; Ray, S.S.: Study of cystine schiff base esters as new environmentally benign multifunctional biolubricant additives. J. Ind. Eng. Chem. 26, 149–156 (2015)

    Article  Google Scholar 

  27. Singh, R.K.; Pandey, S.; Saxena, R.C.; Thakre, G.D.; Atray, N.; Ray, S.S.: Derivatizing l-histidine to develop a novel additive for a polyol-based biolubricant. New J. Chem. 39(7), 5354–5359 (2015)

    Article  Google Scholar 

  28. Chen, H.; Yan, J.; Ren, T.; Zhao, Y.; Zheng, L.: Tribological behavior of some long-chain dimercaptothiadiazole derivatives as multifunctional lubricant additives in vegetable oil and investigation of their tribochemistry using XANES. Tribol. Lett. 45(3), 465–476 (2012)

    Article  Google Scholar 

  29. Li, J.; Fan, B.; Ren, T.; Zhao, Y.: Tribological study and mechanism of B–N and B–S–N triazine borate esters as lubricant additives in mineral oil. Tribol. Int. 88(8), 1–7 (2015)

    Article  Google Scholar 

  30. Nath, A.R.; Yehye, W.A.; Zulkifli, N.W.M.; Johan, M.R.: Ester of thiolated butylated hydroxytoluene: potential antioxidant for synthetic lubricant oil. Thermochim. Acta 670, 7–12 (2018)

    Article  Google Scholar 

  31. Jacobson, C.E.; Martinez-Muñoz, N.; Gorin, D.J.: Aerobic copper-catalyzed O-methylation with methylboronic acid. J. Org. Chem. 80(14), 7305–7310 (2015)

    Article  Google Scholar 

  32. Narra, N.; Kaki, S.S.; Prasad, R.B.N.; Misra, S.; Dhevendar, K.; Kontham, V.; Korlipara, P.V.: Synthesis and evaluation of anti-oxidant and cytotoxic activities of novel 10-undecenoic acid methyl ester based lipoconjugates of phenolic acids. Beilstein J. Org. Chem. 13(1), 26–32 (2017)

    Article  Google Scholar 

  33. Turunc, O.; Firdaus, M.; Klein, G.; Meier, M.A.: Fatty acid derived renewable polyamides via thiol–ene additions. Green Chem. 14(9), 2577–2583 (2012)

    Article  Google Scholar 

  34. Singh, R.K.; Kukrety, A.; Sharma, O.P.; Thakre, G.D.; Atray, N.; Ray, S.S.: Capacity of thiourea schiff base esters as multifunctional additives: synthesis, characterization and performance evaluation in polyol. RSC. Adv. 5(110), 90367–90373 (2015)

    Article  Google Scholar 

  35. Becke, A.D.: Density-functional thermochemistry: II—the role of exact exchange. J. Chem. Phys. 98(7), 5648–5652 (1993)

    Article  Google Scholar 

  36. Wan, Y.; Liu, W.M.; Xue, Q.: The tribological properties and action mechanism of Schiff base as a lubricating oil additive. Lubr. Sci. 7, 187–194 (1995)

    Article  Google Scholar 

  37. Li, J.; Ren, T.; Liu, H.; Wang, D.; Liu, W.: The tribological study of a tetrazole derivative as additive in liquid paraffin. Wear 246(1–2), 130–133 (2000)

    Article  Google Scholar 

  38. Nehme, G.; Mourhatch, R.; Aswath, P.B.: Effect of contact load and lubricant volume on the properties of tribofilms formed under boundary lubrication in a fully formulated oil under extreme load conditions. Wear 268(9–10), 1129–1147 (2010)

    Article  Google Scholar 

  39. Jao, T.C.; Li, S.; Yatsunami, K.; Chen, S.J.; Csontos, A.A.; Howe, J.M.: Soot characterisation and diesel engine wear. Lubr. Sci. 16(2), 111–126 (2004)

    Article  Google Scholar 

  40. Hu, E.; Hu, X.; Liu, T.; Fang, L.; Dearn, K.D.; Xu, H.: The role of soot particles in the tribological behavior of engine lubricating oils. Wear 304(1–4), 152–161 (2013)

    Article  Google Scholar 

  41. Li, W.; Jiang, C.; Chao, M.; Wang, X.: Natural garlic oil as a high-performance, environmentally friendly, extreme pressure additive in lubricating oils. ACS Sustain. Chem. Eng. 2(4), 798–803 (2014)

    Article  Google Scholar 

  42. Zhan, W.; Song, Y.; Ren, T.; Liu, W.: The tribological behaviour of some triazine–dithiocarbamate derivatives as additives in vegetable oil. Wear 256(3–4), 268–274 (2004)

    Article  Google Scholar 

  43. Huang, W.; Tan, Y.; Chen, B.; Dong, J.; Wang, X.: The binding of antiwear additives to iron surfaces: quantum chemical calculations and tribological tests. Tribol. Int. 36(3), 163–168 (2003)

    Article  Google Scholar 

  44. Jaiswal, V.; Rastogi, R.B.; Maurya, J.L.; Singh, P.; Tewari, A.K.: Quantum chemical calculation studies for interactions of antiwear lubricant additives with metal surfaces. RSC. Adv. 4(26), 13438–13445 (2014)

    Article  Google Scholar 

  45. Rastogi, R.B.; Jaiswal, V.; Maurya, J.L.: Theoretical study of Schiff base compounds as antiwear lubricant additives: a quantum chemical calculation approach. Proc. Int. Mech. Eng. J. Eng. 228(2), 198–205 (2014)

    Google Scholar 

  46. Wang, H.; Wang, X.; Wang, H.; Wang, L.; Liu, A.: DFT Study of new bipyrazole derivatives and their potential activity as corrosion inhibitors. J. Mol. Model. 13(1), 147–153 (2007)

    Article  Google Scholar 

  47. Biresaw, G.; Bantchev, G.B.; Cermak, S.C.: Tribological properties of vegetable oils modified by reaction with butanethiol. Tribol. Lett. 43(1), 17–32 (2011)

    Article  Google Scholar 

  48. Adhvaryu, A.; Erhan, S.Z.; Liu, Z.S.; Perez, J.M.: Oxidation kinetic studies of oils derived from unmodified and genetically modified vegetables using pressurized differential scanning calorimetry and nuclear magnetic resonance spectroscopy. Thermochim. Acta 364(1–2), 87–97 (2000)

    Article  Google Scholar 

  49. Santos-Sanchez, N.F.; Salas-Coronado, R.; Villanueva-Canongo, C.; Hernandez-Carlos, B.:. Antioxidant compounds and their antioxidant mechanism. In: Antioxidants (2019)

  50. Balasundram, N.; Sundram, K.; Samman, S.: Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence and potential uses. Food Chem. 99(1), 191–203 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

Venkateshwarlu Kontham thanks the University Grants Commission (UGC), New Delhi, India, for financial support through a Senior Research Fellowship (SRF). Manuscript Communication Number: IICT/Pubs./2019/158.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korlipara V. Padmaja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kontham, V., Ansari, K.R. & Padmaja, K.V. Tribological Properties of 10-Undecenoic Acid-Derived Schiff Base Lubricant Additives. Arab J Sci Eng 46, 5593–5603 (2021). https://doi.org/10.1007/s13369-020-05125-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05125-x

Keywords

Navigation