Skip to main content
Log in

Temperature-Dependent Circuit Modeling and Performance Evaluation Due to Crosstalk in Capacitively Coupled Interconnects of Intercalation-Doped Multilayer Graphene Nanoribbon

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present work explores the temperature-dependent performance evaluation due to crosstalk in coupled interconnects of intercalation-doped multilayer graphene nanoribbons (ID-MLGNR). A temperature-dependent equivalent single conductor (ESC) model of arsenic pentafluoride (AsF5) ID-MLGNR is considered and is employed to analyze its crosstalk performance (i.e., crosstalk-induced noise and crosstalk-induced delay). Other metallic interconnect materials viz. mixed carbon nanotube bundles (MCB) and copper (Cu) are also analyzed in a similar manner. The temperature-dependent crosstalk performance of ID-MLGNR is compared with that of MCB and Cu, at different temperatures from 300 to 500 K. For the specified temperature range, in case of crosstalk-induced noise, the AsF5 ID-MLGNR-based long interconnects demonstrate superior performance to its MCBs and Cu counterparts. Moreover, the temperature-dependent crosstalk-induced delay is less with ID-MLGNR in comparison with both MCB and Cu interconnects. The large values of the mean free path (MFP) and conductivity of AsF5 ID-MLGNR contribute to its improved performance. In addition, the impact of variation in MFP, interlayer spacing and Fermi level is studied on the crosstalk delay performance of ID-MLGNR. From the obtained results, it is revealed that variation in these parameters results in the significant variation of 62 ps, 51 ps and 169 ps, respectively, in the odd mode (OM) crosstalk delay. Hence, for emerging nano-technology nodes (e.g., 14 nm), ID-MLGNR interconnects with its improved crosstalk performance are proposed as a potential alternative to its MCBs and Cu counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Chen, X.; Seo, D.H.; Seo, S.; Chung, H.; Wong, H.S.P.: Graphene interconnect lifetime: a reliability analysis. IEEE Electron Devices Lett. 33(11), 1604–1606 (2012)

    Article  Google Scholar 

  2. Cui, J.P.; Zhao, W.S.; Yin, W.Y.; Hu, J.: Signal transmission analysis of multilayer graphene nano-ribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 54(1), 126–132 (2011)

    Article  Google Scholar 

  3. Zhao, W.S.; Yin, W.Y.: Signal integrity analysis of graphene nano-ribbon (GNR) interconnects. In: IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), pp. 227–230 (2012)

  4. Rai, M.K.; Chatterjee, A.K.; Sarkar, S.; Kaushik, B.K.: Performance analysis of multilayer graphene nanoribbon (MLGNR) interconnects. J. Comput. Electron. 15(2), 358–366 (2016)

    Article  Google Scholar 

  5. Li, H.; Xu, C.; Srivastava, N.; Banerjee, K.: Carbon nanomaterials for next-generation interconnects and passives: physics, status, and prospects. IEEE Trans. Electron Devices 56(9), 1799–1821 (2009)

    Article  Google Scholar 

  6. Rakheja, S.; Kumar, V.; Naeemi, A.: Evaluation of the potential performance of graphene nanoribbons as on-chip interconnects. Proc. IEEE 101(7), 1740–1765 (2013)

    Article  Google Scholar 

  7. Roslyak, O.; Gumbs, G.; Huang, D.: Tunable band structure effects on ballistic transport in graphene nanoribbons. Phys. Lett. A 374(39), 4061–4064 (2010)

    Article  Google Scholar 

  8. Naeemi, A.; Meindl, J.D.: Conductance modeling for graphene nanoribbon (GNR) interconnects. IEEE Electron Devices Lett. 28(5), 428–431 (2007)

    Article  Google Scholar 

  9. Xu, C.; Li, H.; Banerjee, K.: Modeling, analysis, and design of graphene nano-ribbon interconnects. IEEE Trans. Electron Devices 56(8), 1567–1578 (2009)

    Article  Google Scholar 

  10. Naeemi, A.; Meindl, J.D.: Compact physics-based circuit models for graphene nanoribbon interconnects. IEEE Trans. Electron Devices 56(9), 1822–1833 (2009)

    Article  Google Scholar 

  11. Haruehanroengra, S.; Wang, W.: Analyzing conductance of mixed carbon-nanotube bundles for interconnect applications. IEEE Electron Devices Lett. 28(8), 756–759 (2007)

    Article  Google Scholar 

  12. Zhu, L.; Xiu, Y.; Hess, D.W.; Wong, C.P.: Growth of aligned carbon nanotube arrays for electrical interconnect. In: 7th Electronic Packaging Technology Conference, Singapore, pp. 646–651 (2005)

  13. Murali, R.; Brenner, K.; Yang, Y.; Beck, T.; Meindl, J.D.: Resistivity of graphene nanoribbon interconnects. IEEE Electron Devices Lett. 30(6), 611–613 (2009)

    Article  Google Scholar 

  14. Nasiri, S.H.; Moravvej-Farshi, M.K.; Faez, R.: Stability analysis in graphene nanoribbon interconnects. IEEE Electron Devices Lett. 31(12), 1458–1460 (2010)

    Article  Google Scholar 

  15. Nishad, A.K.; Sharma, R.: Analytical time-domain models for performance optimization of multilayer GNR interconnects. IEEE J. Sel. Top. Quantum Electron. 20(1), 17–24 (2013)

    Article  Google Scholar 

  16. Kumar, V.; Rakheja, S.; Naeemi, A.: Performance and energy-per-bit modeling of multilayer graphene nanoribbon conductors. IEEE Trans. Electron Devices 59(10), 2753–2761 (2012)

    Article  Google Scholar 

  17. Nishad, A.K.; Sharma, R.: Performance analysis of AsF5-intercalated top-contact multi layer graphene nanoribbon interconnects. In: IEEE International Symposium on Nanoelectronic and Information Systems, pp. 170–174 (2015)

  18. Jiang, J.; Kang, J.; Cao, W.; Xie, X.; Zhang, H.; Chu, J.H.; Liu, W.; Banerjee, K.: Intercalation doped multilayer-graphene-nanoribbons for next-generation interconnects. Nano Lett. 17(3), 1482–1488 (2017)

    Article  Google Scholar 

  19. Kumar, V.R.; Majumder, M.K.; Kukkam, N.R.; Kaushik, B.K.: Time and frequency domain analysis of MLGNR interconnects. IEEE Trans. Nanotechnol. 14(3), 484–492 (2015)

    Article  Google Scholar 

  20. Nishad, A.K.; Sharma, R.: Lithium-intercalated graphene interconnects: prospects for on-chip applications. IEEE J. Electron Devices Soc. 4(6), 485–489 (2016)

    Article  Google Scholar 

  21. Kaur, T.; Rai, M.K.; Khanna, R.: Effect of temperature on the performance analysis of MLGNR interconnects. J. Comput. Electron. 18(2), 722–736 (2019)

    Article  Google Scholar 

  22. Agarwal, K.; Sylvester, D.; Blaauw, D.: Modeling and analysis of crosstalk noise in coupled RLC interconnects. IEEE Trans. Comput. Aided Des. Int. Circuits Syst. 25(5), 892–901 (2006)

    Article  Google Scholar 

  23. Zhao, W.S.; Yin, W.Y.: Comparative study on multilayer graphene nanoribbon (MLGNR) interconnects. IEEE Trans. Electromagn. Compat. 56(3), 638–645 (2014)

    Article  Google Scholar 

  24. Qian, L.; Xia, Y.; Shi, G.: Study of crosstalk effect on the propagation characteristics of coupled MLGNR interconnects. IEEE Trans. Nanotechnol. 15(5), 810–819 (2016)

    Article  Google Scholar 

  25. Kumar, V.R.; Kaushik, B.K.; Patnaik, A.: Modeling of crosstalk effects in coupled MLGNR interconnects based on FDTD method. In: IEEE 64th Electronic Components and Technology Conference (ECTC), pp. 1091–1097 (2014)

  26. Hosseini, A.; Shabro, V.: Thermally-aware modeling and performance evaluation for single-walled carbon nanotube-based interconnects for future high performance integrated circuits. Microelectron. Eng. 87(10), 1955–1962 (2010)

    Article  Google Scholar 

  27. Rai, M.K.; Garg, H.; Kaushik, B.K.: Temperature-dependent modeling and crosstalk analysis in mixed carbon nanotube bundle interconnects. J. Electron. Mater. 46(8), 5324–5337 (2017)

    Article  Google Scholar 

  28. Kumar, A.; Kumar, V.R.; Kaushik, B.K.: Transient analysis of crosstalk induced effects in mixed CNT bundle interconnects using FDTD technique. IEEE Trans. Electromagn. Compat. (2018). https://doi.org/10.1109/TEMC.2018.2872899

    Article  Google Scholar 

  29. Rai, M.K.; Arora, S.; Kaushik, B.K.: Temperature-dependent modeling and performance analysis of coupled MLGNR interconnects. Int. J. Circuit Theory Appl. 46(2), 299–312 (2018)

    Article  Google Scholar 

  30. Das, S.; Bhattacharya, S.; Das, D.; Rahaman, H.: Modeling and analysis of electro-thermal impact of crosstalk induced gate oxide reliability in pristine and intercalation doped MLGNR interconnects. IEEE Trans. Device Mater. Reliab. 19(3), 543–550 (2019)

    Article  Google Scholar 

  31. Hamedani, S.G.; Moaiyeri, M.H.: Impacts of process and temperature variations on the crosstalk effects in sub-10 nm multilayer graphene nanoribbon interconnects. IEEE Trans. Device Mater. Reliab. 19(4), 630–641 (2019)

    Article  Google Scholar 

  32. Hamedani, S.G.; Moaiyeri, M.H.: Comparative analysis of the crosstalk effects in multilayer graphene nanoribbon and MWCNT interconnects in sub-10 nm technologies. IEEE Trans. Electromagn. Compat. (2019). https://doi.org/10.1109/TEMC.2019.2903567

    Article  Google Scholar 

  33. Kaur, T.; Rai, M.K.; Khanna, R.: Analysis of temperature dependent functional and dynamic crosstalk noise in adjacent interconnects of doped MLGNR with armchair and zigzag edges. Phys. stat. sol. (a) (2019). https://doi.org/10.1002/pssa.201900591

    Article  Google Scholar 

  34. Fischer, J.E.; Thompson, T.E.: Graphite intercalation compounds. Phys. Today 31, 36–45 (1978)

    Article  Google Scholar 

  35. Falardeau, E.R.; Foley, G.M.; Zeller, C.; Vogel, F.L.: Very high electrical conductivity in AsF5–graphite intercalation compounds. J. Chem. Sot. Chem. Commun. 11, 389–390 (1977)

    Article  Google Scholar 

  36. Vogel, F.L.: The electrical conductivity of graphite intercalated with superacid fluorides: experiments with antimony pentafluoride. J. Mater. Sci. 2(5), 982–986 (1977)

    Article  Google Scholar 

  37. Foley, G.T.; Zeller, C.; Falardeau, E.R.; Vogel, F.L.: Room temperature electrical conductivity of a highly two dimensional synthetic metal: AsF5-graphite. Solid State Commun. 24(5), 371–375 (1977)

    Article  Google Scholar 

  38. Shioya, J.; Matsubara, H.; Murakami, S.: Properties of AsF5-intercalated vapor-grown graphite. Synth. Met. 14(1–2), 113–123 (1986)

    Article  Google Scholar 

  39. Jiang, J.; Kang, J.; Banerjee, K.: Characterization of self-heating and current-carrying capacity of intercalation doped graphene-nanoribbon interconnects. In: IEEE International Reliability Physics Symposium (IRPS), April 6B-1, IEEE (2017)

  40. Semiconductor Industry Association, International Technology Roadmap for Semiconductors (ITRS). http://www.itrs.net

  41. Predictive Technology Model (PTM). http://www.eas.asu.edu/~ptm/

  42. Majumder, M.K.; Kaushik, B.K.; Manhas, S.K.: Analysis of delay and dynamic crosstalk in bundled carbon nanotube interconnects. IEEE Trans. Electromagn. Compat. 56(6), 1666–1673 (2014)

    Article  Google Scholar 

  43. Subash, S.; Kolar, J.; Chowdhury, M.H.: A new spatially rearranged bundle of mixed carbon nanotubes as VLSI interconnection. IEEE Trans. Nanotechnol. 12(1), 3–12 (2011)

    Article  Google Scholar 

  44. Chen, X.; Lee, K.J.; Akinwande, D.; Close, G.F.; Yasuda, S.; Paul, B.; Fujita, S.; Kong, J.; Wong, H.S.P.: High-speed graphene interconnects monolithically integrated with CMOS ring oscillators operating at 1.3 GHz. In: IEEE International Electron Devices Meeting (IEDM), pp. 1–4 (2009)

  45. Katagiri, M.; Miyazaki, H.; Yamazaki, Y.; Zhang, L.; Matsumoto, T.; Wada, M.; Kajita, A.; Sakai, T.: Electrical properties of multilayer graphene interconnects prepared by chemical vapor deposition. In: IEEE International Interconnect Technology Conference-IITC, pp. 1–3 (2013)

  46. Politou, M.; Wu, X.; Asselberghs, I.; Contino, A.; Soree, B.; Radu, I.; Huyghebaert, C.; De Tokei, Z.; Gendt, S.; Heyns, M.: Evaluation of multilayer graphene for advanced interconnects. Microelectron. Eng. 167, 1–5 (2017)

    Article  Google Scholar 

  47. Nasiri, S.H.; Faez, R.; Moravvej-Farshi, M.K.: Compact formulae for number of conduction channels in various types of graphene nanoribbons at various temperatures. Mod. Phys. Lett. B 26(1), 1150004-1–1150004-5 (2012)

    Article  Google Scholar 

  48. Majumder, M.K.; Das, P.K.; Kaushik, B.K.: Delay and crosstalk reliability issues in mixed MWCNT bundle interconnects. Microelectron. Reliab. 54(11), 2570–2577 (2014)

    Article  Google Scholar 

  49. Das, D.; Rahaman, H.: Crosstalk and gate oxide reliability analysis in graphene nanoribbon interconnects. In: IEEE International Symposium on Electronic System Design, pp. 182–187 (2011)

  50. Liang, F.; Wang, G.; Lin, H.: Modeling of crosstalk effects in multiwall carbon nanotube interconnects. IEEE Trans. Electromagn. Compat. 54(1), 133–139 (2011)

    Article  Google Scholar 

  51. Reddy, K.N.; Majumder, M.K.; Kaushik, B.K.: Delay uncertainty in MLGNR interconnects under process induced variations of width, doping, dielectric thickness and mean free path. J. Comput. Electron. 13(3), 639–646 (2014)

    Article  Google Scholar 

Download references

Funding

This work was supported in part by the council of scientific and industrial research (CSIR) under Grant 22(0758)/17/EMR-II.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tajinder Kaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, T., Rai, M.K. & Khanna, R. Temperature-Dependent Circuit Modeling and Performance Evaluation Due to Crosstalk in Capacitively Coupled Interconnects of Intercalation-Doped Multilayer Graphene Nanoribbon. Arab J Sci Eng 46, 1079–1093 (2021). https://doi.org/10.1007/s13369-020-04892-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04892-x

Keywords

Navigation