Skip to main content
Log in

The electrical conductivity of graphite intercalated with superacid fluorides: experiments with antimony pentafluoride

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrical conductivity in graphite measured normal to the crystallographic c-axis is observed to increase after intercalation with acid molecules which act as acceptors. This behaviour is regarded as the result of ionization of the acid molecule which, in turn, increases the positive current carriers in the host graphite. Since the carrier density depends on the degree of ionization of the acid, it follows that the stronger the acid the greater the increase in carrier concentration, and assuming no adverse mobility effects, the greater the electrical conductivity. The hydrogen fluoride-antimony pentafluoride system produces some of the strongest acid substances known. The experiments described here represent the initial examination of the electrical conductivity resulting from intercalation of this material into graphite. The experiments consisted of intercalating graphite powder with antimony pentafluoride in a copper tube and swaging the sheathed compound into wire. The measured conductivity of the graphite intercalation compound, when the copper conductivity is subtracted out and allowance is made for departure from ideal density, is about 1×106 Ω−1 cm−1. This is approximately 40 times the conductivity of pristine graphite and more than one and a half times the conductivity of pure copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. R. Ubbelohde, L. C. F. Blackman and J. F. Matthews, Nature London 183 (1959) 454.

    Google Scholar 

  2. A. Herold, Bull. Soc. Chim. Fr. (1955) 999.

  3. W. Rudorff and E. Schulze, Z. Anorg. Allgem. Chem. 279 (1954) 156.

    Google Scholar 

  4. D. Guerard and A. Herold, Compt. Rend. 280 (1975) 729.

    Google Scholar 

  5. L. C. F. Blackman, J. F. Mathews and A. R. Ubbelohde, Proc. Roy. Soc. A258 (1960) 339.

    Google Scholar 

  6. J. J. Murray and A. R. Ubbelohde, ibid A312 (1951) 191.

    Google Scholar 

  7. F. R. M. McDonnel, R. C. Pink and A. R. Ubbelohde, J. Chem. Soc. (1951) 191.

  8. A. R. Ubbelhode, Proc. Roy. Soc. A304 (1968) 25.

    Google Scholar 

  9. B. Bach and A. R. Ubbelohde, ibid A325 (1971) 437.

    Google Scholar 

  10. T. Sasa, Y. Tahahashi and T. Muhaibo, Bull. Chem. Soc. Japan 45 (1972) 2657.

    Google Scholar 

  11. J. E. Fischer, Abstract of APS 1976 March Meeting, Atlanta, Bull. APS II 21 (1976) 261.

    Google Scholar 

  12. R. J. Gillespie and T. E. Peel, Adv. Phys. Org. Chem. 9 (1971) 1.

    Google Scholar 

  13. M. A. Paul and F. A. Long, Chem. Rev. 57 (1957) 1.

    Google Scholar 

  14. John E. Fischer, Thomas E. Thompson and F. Lincoln Vogel, A.C.S. Symposium series No. 21, “Petroleum Derived Carbons” (1975) p. 418.

    Google Scholar 

  15. H. H. Hyman and J. J. Katz, “Non-Aqueous Solvent Systems”, edited by T. C. Waddington (Academic Press, New York, 1965) p. 76.

    Google Scholar 

  16. H. H. Hyman, L. A. Quarterman, M. Kilpetrich and J. J. Katz, J. Phys. Chem. 65 (1961) 123.

    Google Scholar 

  17. J. M. Lalancette and J. Lafontaine, J.C.S. Chem. Commun. (1973) 815.

  18. Daniel Guerard, private communication.

  19. I. L. Spain, Chem. Phys. Carbon 8 (1973) 1.

    Google Scholar 

  20. A. R. Ubbelohde, Proc. Roy. Soc. A327 (1972) 289.

    Google Scholar 

  21. Idem, Proceedings of the 5th Carbon Conference (1961) 1.

  22. A. H. Cottrell, “An Introduction to Metallurgy” (St. Martins Press, New York, 1967) p. 313.

    Google Scholar 

  23. Jimy Gan, private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lincoln Vogel, F. The electrical conductivity of graphite intercalated with superacid fluorides: experiments with antimony pentafluoride. J Mater Sci 12, 982–986 (1977). https://doi.org/10.1007/BF00540981

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540981

Keywords

Navigation