Skip to main content
Log in

Correlation Between SPT and PMT for Sandy Silt: A Case Study from Kuala Lumpur, Malaysia

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the pressuremeter modulus (EM) and the unload–reload modulus (Eur) consisted of a wide range of data were correlated to blow counts (N60) using a maximum of 50 blows/300 mm and the extrapolated N60 of 300 blows/300 mm. A 3D model and statistical analysis were used to provide relevant justifications for the selection of this extrapolation method, considering that N60 was limited to 50 blows. In generating a 3D model, the N60 profile was developed using the inverse distance weighting method for predicting unsampled data between boreholes. Correlations were established for the sandy silt soil type that was observed as the dominant lithology in the Klang Valley Mass Rapid Transit line 1 project in Kuala Lumpur, Malaysia. A total 52 pressuremeter test and standard penetration test data pairs were obtained at depths ranging from 6 to 41.7 m within the Kenny Hill Formation (KHF) and the contact zone between the KHF and the limestone formation. This contact zone has shown distinct geological features with the characteristic of a lower N60 value underlying stiff strata. According to the EM/Eur ratio, the maximum value of 7 indicated that this zone is unpredicted in initial and unload–reload stiffness compared to the non-contact zone (the KHF only), with a maximum ratio of 3. Therefore, separate correlations were established to distinguish these zones. Strong correlations between N60 and EM were identified by splitting these zones. The proposed correlation was then compared with the previous research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Cheshomi, A.; Ghodrati, M.: Estimating Menard pressuremeter modulus and limit pressure from SPT in silty sand and silty clay soils. A case study in Mashhad, Iran. Geomech. Geoengin. 10, 194–202 (2015). https://doi.org/10.1080/17486025.2014.933894

    Article  Google Scholar 

  2. Batilas, A.V.; Pelekis, P.C.; Roussos, P.G.; Athanasopoulos, G.A.: SPT energy measurements: manual vs. automatic hammer release. Geotech. Geol. Eng. 35(2), 879–888 (2017). https://doi.org/10.1007/s10706-016-0138-z

    Article  Google Scholar 

  3. dos Santos, M.D.; Bicalho, K.V.: Proposals of SPT-CPT and DPL-CPT correlations for sandy soils in Brazil. J. Rock Mech. Geotech. Eng. 9, 1152–1158 (2017). https://doi.org/10.1016/j.jrmge.2017.08.001

    Article  Google Scholar 

  4. Akca, N.: Correlation of SPT–CPT data from the United Arab Emirates. Eng. Geol. 67, 219–231 (2003). https://doi.org/10.1016/S0013-7952(02)00181-3

    Article  Google Scholar 

  5. Sivrikaya, O.; Toǧrol, E.: Determination of undrained strength of fine-grained soils by means of SPT and its application in Turkey. Eng. Geol. 86, 52–69 (2006). https://doi.org/10.1016/j.enggeo.2006.05.002

    Article  Google Scholar 

  6. Ameratunga, J.; Sivakugan, N.; Das, B.M.: Correlations of soil and rock properties in geotechnical engineering. Springer India, New Delhi (2016)

    Book  Google Scholar 

  7. Lukas, R.G.: Pressuremeter testing for foundation design. In: Hussein, M.H., Anderson, J.B., Camp, W.M. (eds.) The Art of Foundation Engineering Practice, pp. 371–379. American Society of Civil Engineers, Virginia (2010)

    Chapter  Google Scholar 

  8. Schanz, T.; Vermeer, P.A.; Bonnier, P.G.: The hardening soil model: formulation and verification. In: Beyond 2000 in Computational Geotechnics, pp. 281–296. Balkema, Rotterdam (1999)

  9. Mair, R.J.; Wood, D.M.: Pressuremeter Testing Methods and Interpretation. CIRIA, London (1987). (ISSN:0-408-02434-8)

    Google Scholar 

  10. Bozbey, I.; Togrol, E.: Correlation of standard penetration test and pressuremeter data: a case study from Istanbul, Turkey. Bull. Eng. Geol. Environ. 69, 505–515 (2010). https://doi.org/10.1007/s10064-009-0248-4

    Article  Google Scholar 

  11. Chiang, Y.C.; Ho, Y.M.: Pressuremeter method for foundation design in Hong Kong. In: Proceedings of Sixth Southeast Asian Conference on Soil Engineering, vol. 1, pp. 31–42 (1980)

  12. Kayabasi, A.: Prediction of pressuremeter modulus and limit pressure of clayey soils by simple and non-linear multiple regression techniques: a case study from Mersin, Turkey. Environ. Earth Sci. 66, 2171–2183 (2012). https://doi.org/10.1007/s12665-011-1439-4

    Article  Google Scholar 

  13. Yagiz, S.; Akyol, E.; Sen, G.: Relationship between the standard penetration test and the pressuremeter test on sandy silty clays: a case study from Denizli. Bull. Eng. Geol. Environ. 67, 405–410 (2008). https://doi.org/10.1007/s10064-008-0153-2

    Article  Google Scholar 

  14. Phoon, K.; Kulhawy, F.H.: Evaluation of geotechnical property variability. Can. Geotech. J. 36, 625–639 (1999). https://doi.org/10.1139/t99-039

    Article  Google Scholar 

  15. Lim, A.; Ou, C.Y.: Stress paths in deep excavations under undrained conditions and its influence on deformation analysis. Tunn. Undergr. Sp. Technol. 63, 118–132 (2017). https://doi.org/10.1016/j.tust.2016.12.013

    Article  Google Scholar 

  16. Chang, M.; Zhu, H.: Construction effect on load transfer along bored piles. J. Geotech. Geoenviron. Eng. 130, 426–437 (2000). https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(426)

    Article  Google Scholar 

  17. Jamiolkowski, M.; Lo Presti D.C.F.; Pallara O.: Role of in-situ testing in geotechnical earthquake engineering. In: Proceeding of the 3rd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri, 2–7 April, vol. II, pp. 1523–1546 (1995)

  18. Law, K.H.; Othman, S.Z.; Hashim, R.; Ismail, Z.: Determination of soil stiffness parameters at a deep excavation construction site in Kenny Hill Formation. Meas. J. Int. Meas. Confed. 47, 645–650 (2014). https://doi.org/10.1016/j.measurement.2013.09.030

    Article  Google Scholar 

  19. Lee, C.P.: Palaeozoic stratigraphy. In: Hutchison, C.S., Tan, D.N.K. (eds.) Geology of Peninsular Malaysia, 1st edn, pp. 55–86. The University of Malaya and The Geological Society of Malaysia, Kuala Lumpur (2009)

    Google Scholar 

  20. Hutchison, C.S.; Tan, D.N.K.: Geology of Peninsular Malaysia. University of Malaya, Kuala Lumpur (2009)

    Google Scholar 

  21. Tan, B.K.: Urban geology of Kuala Lumpur and Ipoh, Malaysia. In: International Association of Engineering Geology (IAEG2006), pp. 1–7. London: The Geological Society of London (2006)

  22. Geological map of peninsular Malaysia.: Department of Mineral and Geoscience Malaysia (2012)

  23. Raj, J.K.: Geomorphology. In: Hutchison, C.S.; Tan, D.N.K. (eds.) Geology of Peninsular Malaysia, 1st edn, pp. 5–29. University of Malaya, Geological Society of Malaysia, Kuala Lumpur (2006)

    Google Scholar 

  24. Mohamed, Z.; Rafek, A.G.; Komoo, I.: Characterisation and classification of the physical deterioration of tropically Weathered Kenny Hill rock for civil works. Electron. J. Geotech. Eng. 12, 1–26 (2007)

    Google Scholar 

  25. BS1377: British Standard Methods of Test for Soils for civil engineering purposes: Part 9: In-Situ Tests. British Standards Institution, London (1990)

    Google Scholar 

  26. Seed, H.B.; Idriss, I.M.; Arango, I.: Evaluation of liquefaction potential using field performance data. J. Geotech. Eng. (1983). https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458)

    Article  Google Scholar 

  27. Cavallaro, A.; Grasso, S.; Maugeri, M.: Small strain stiffness by MPTs for site response analysis. In: Proceedings of the International Symposium on 60 Years of Pressuremeters, ISP’7—Pressio, Hammamet, 1–2 May, pp. 347–356 (2015)

  28. Likitlersuang, S.; Surarak, C.; Wanatowski, D.; Oh, E.; Balasubramaniam, A.: Geotechnical parameters from pressuremeter tests for MRT blue line extension in Bangkok. Geomech. Eng. 5(2), 99–118 (2013). https://doi.org/10.12989/gae.2013.5.2.099

    Article  Google Scholar 

  29. Schnaid, F.: In Situ Testing in Geomechnaincs: The Main Tests. Taylor and Francis, Oxford (2009)

    Google Scholar 

  30. Baguelin, F.; Jezequel, J.F.; Shields, D.H.: The Pressuremeter and Foundation Engineering. Trans Tech. Publication, Clausthal (1978)

    Google Scholar 

  31. ASTM-D4719.: Standard Test Method for Prebored Pressuremeter Testing in Soils. ASTM International, West Conshohocken, PA (2000)

    Google Scholar 

  32. Isik, N.S.; Ulusay, R.; Doyuran, V.: Deformation modulus of heavily jointed–sheared and blocky greywackes by pressuremeter tests: numerical, experimental and empirical assessments. Eng. Geol. 101(3–4), 269–282 (2008)

    Article  Google Scholar 

  33. Bowles, J.E.: Foundation Analysis and Design, 5th edn. McGraw- Hill, New York (1997)

    Google Scholar 

  34. BS5930: Code of Practice for Site Investigations. Section 6. British Standard Institution, London (1999)

    Google Scholar 

  35. Google Maps.: Kuala Lumpur city center. https://www.maps.google.com. Accessed 11 Jan 2018

  36. Varghese, P.C.: Foundation Engineering. PHI Learning Pvt. Ltd, New Delhi (2005)

    Google Scholar 

  37. Kulhawy, F.H.; Trautmann, C.H.: Estimation of In-Situ Test Uncertainty. Uncertainty in the Geologic Environment, pp. 269–286. ASCE, Madison (1996)

    Google Scholar 

  38. Koch, G.S.; Link, R.F.: The coefficient of variation; a guide to the sampling of ore deposits. Econ. Geol. 66(2), 293–301 (1971)

    Article  Google Scholar 

  39. GEO: Guide to Site Investigation (Geoguide 2). Geotechnical Engineering Office, Hong Kong (1987)

    Google Scholar 

  40. Anbazhagan, P.; Parihar, A.; Rashmi, H.N.: Review of correlations between SPT N and shear modulus: a new correlation applicable to any region. Soil Dyn. Earthq. Eng. 36, 52–69 (2012). https://doi.org/10.1016/j.soildyn.2012.01.005

    Article  Google Scholar 

  41. Imai, T.; Tonouchi, K.: Correlation of N value with S-wave velocity and shear modulus. In: Penetration Testing Proceedings of 2nd European Symposium, Amsterdam (1982)

  42. Anwar, M.B.: Correlation between PMT and SPT results for calcareous soil. HBRC J. (2016). https://doi.org/10.1016/j.hbrcj.2016.03.001

    Article  Google Scholar 

  43. Huat, B.B.; Toll, D.G.; Prasad, A.: Handbook of Tropical Residual Soils Engineering. CRC Press, Boca Raton (2012)

    Book  Google Scholar 

  44. Tan, B.K.: Engineering geology in Malaysia—some case studies. Bull. Geol. Soc. Malaysia 64, 65–79 (2017)

    Article  Google Scholar 

  45. Touch, S.; Likitlersuang, S.; Pipatpongsa, T.: 3D geological modelling and geotechnical characteristics of Phnom Penh subsoils in Cambodia. Eng. Geol. 178, 58–69 (2014). https://doi.org/10.1016/j.enggeo.2014.06.010

    Article  Google Scholar 

  46. Zhu, L.; Zhang, C.; Li, M.; Pan, X.; Sun, J.: Building 3D solid models of sedimentary stratigraphic systems from borehole data: an automatic method and case studies. Eng. Geol. 127, 1–13 (2012). https://doi.org/10.1016/j.enggeo.2011.12.001

    Article  Google Scholar 

  47. Lu, G.Y.; Wong, D.W.: An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 34(9), 1044–1055 (2008). https://doi.org/10.1016/j.cageo.2007.07.010

    Article  Google Scholar 

  48. Bonham-Carter, G.F.: Geographic information systems for geo-scientists: modelling with GIS. Elsevier, Pergamon (1994)

    Google Scholar 

  49. Burrough, P.A.; McDonnell, R.A.: Creating Continuous Surfaces from Point Data. Principles of Geographic Information Systems. Oxford University Press, Oxford (1998)

    Google Scholar 

  50. Kong, T.B.; Komoo, I.: Urban geology: case study of Kuala Lumpur, Malaysia. Eng. Geol. 28(1–2), 71–94 (1990). https://doi.org/10.1016/0013-7952(90)90034-X

    Article  Google Scholar 

  51. Rockware.: Rockworks17 Software Help. Boulder (2016)

  52. Smith, G.N.: Probability and Statistics in Civil Engineering. Collins, London (1986)

    Google Scholar 

  53. Gue, S.S.; Tan, Y.C.: The foundation system for Berjaya Times Square. Seminar on Mega Projects: A Study on Civil Engineering Projects, University Technology Malaysia, Johor Bharu, Malaysia (2001)

  54. Baker, Jr, C.N.; Drumright, E.; Joseph, L.M.; Azam, I.: Foundation Design and Performance of the World's Tallest Building, Petronas Towers (1998)

  55. Clayton, C.R.I.; Matthews, M.C.; Simons, N.E.: Site Investigation, 2nd edn. Blackwell, Cambridge (1995)

    Google Scholar 

  56. Townsend, F.C.: Geotechnical characteristics of residual soils. J. Geotech. Eng. (1985). https://doi.org/10.1061/(ASCE)0733-9410(1985)111:1(77)

    Article  Google Scholar 

  57. Balasubramaniam, A.S.; Bergado, D.T.; Sivandran, C.: Engineering behavior of soil in Southeast Asia. Geotechnical engineering in Southeast Asia. A commemorative volume of the Southeast Asian Geotechnical Society (1985)

Download references

Acknowledgements

The author acknowledges the financial support provided by Grant FRGS: MINISTRY OF EDUCATION MALAYSIA for the topic of “Establishment of Kenny Hill Small Strain Stiffness Parameter and Stiffness Degradation Curve for Sustainable Urban Underground Infrastructure Development in Malaysia” (FRGS 1/2018/TK08/USM/02/2). The first author is grateful to Universiti Malaysia Perlis and the Ministry of Education Malaysia for a study leave in Universiti Sains Malaysia. Thanks to the MRT Corp for the data and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Ashraf Mohamad Ismail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaki, M.F.M., Ismail, M.A.M. & Govindasamy, D. Correlation Between SPT and PMT for Sandy Silt: A Case Study from Kuala Lumpur, Malaysia. Arab J Sci Eng 45, 8281–8302 (2020). https://doi.org/10.1007/s13369-020-04684-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04684-3

Keywords

Navigation