Skip to main content

Advertisement

Log in

Mechanical Properties of Maize Stalk Nano-particle Reinforced Epoxy Composites

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study addresses challenges of maize stalk wastes via conversion into nano-particles for producing epoxy composites at different levels of reinforcements. Mechanical tests were conducted on the produced epoxy composites. The result obtained reveals that development of epoxy polymer is synonymous with metallic crystal nucleation and growth. Epoxy composites have composite grains finer than those of the epoxy polymer. The hardness value increased from 2.2 HV of the pristine epoxy polymer to 10.35 and 17.83 HV at 2 wt% UCMSnp and CMSnp additions, respectively. The improvement in the hardness values is equal to about 370 and 710%, respectively; likewise, the tensile strengths. Better mechanical performance of the epoxy/carbonized maize stalk nano-composites than its counterpart containing uncarbonized maize stalk nano-particles is attributed to residual carbon in the carbonized maize stalk nano-particles known with high strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Williams, T.; Hosur, M.; Theodore, M.; Netravali, A.; Rangari, V.; Jeelani, S.: Time effects on morphology and bonding ability in mercerized natural fibers for composite reinforcement. Int. J. Polym. Sci. 2011, 1–9 (2011). https://doi.org/10.1155/2011/192865

    Article  Google Scholar 

  2. Mohanty, A.K.; Misra, M.; Drzal, L.T.: Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J. Polym. Environ. 10(1), 19–26 (2002). https://doi.org/10.1023/A:1021013921916

    Article  Google Scholar 

  3. Adebisi, J.A.; Agunsoye, J.O.; Bello, S.A.; Ahmed, I.I.; Ojo, O.A.; Hassan, S.B.: Potential of producing solar grade silicon nano-particles from selected agro-wastes: a review. Sol. Energy 142, 68–86 (2017). https://doi.org/10.1016/j.solener.2016.12.001

    Article  Google Scholar 

  4. Bello, S.A.; Agunsoye, J.O.; Adebisi, J.A.; Hassan, S.B.: Optimisation of charge ratios for ball milling synthesis: agglomeration and refinement of coconut shells. Eng. Appl. Sci. Res. (EASR) 42(4), 262–272 (2018). https://doi.org/10.14456/easr.2018.36

    Article  Google Scholar 

  5. Bello, S.A.; Agunsoye, J.O.; Adebisi, J.A.; Kolawole, F.O.; Raji, N.K.; Hassan, S.B.: Quasi crystal Al (1xxx)/carbonised coconut shell nano-particles: synthesis and characterisation. MRS Adv. 3(42–43), 2559–2571 (2018). https://doi.org/10.1557/adv.2018.369

    Article  Google Scholar 

  6. Joiner, A.: A silica toothpaste containing blue covarine: a new technological breakthrough in whitening. Int. Dent. J. 59(5), 284–288 (2009)

    Google Scholar 

  7. Joshi, H.H.; Gertz, R.E.; da Gloria Carvalho, M.; Beall, B.W.: Use of silica desiccant packets for specimen storage and transport to evaluate pneumococcal nasopharyngeal carriage among Nepalese children. J. Clin. Microbiol. 46(9), 3175–3176 (2008)

    Article  Google Scholar 

  8. Adebisi, J.A.; Agunsoye, J.O.; Bello, S.A.; Kolawole, F.O.; Ramakokovhu, M.M.; Daramola, M.O.; Hassan, S.B.: Extraction of silica from sugarcane bagasse, cassava periderm and maize stalk: proximate analysis and physico-chemical properties of wastes. Waste Biomass Valoriz. 10, 617–629 (2019). https://doi.org/10.1007/s12649-017-0089-5

    Article  Google Scholar 

  9. Adebisi, J.A., Agunsoye, J.O., Bello, S.A., Ramakokovhu, M.M., Daramola, M.O., Hassan, S.B.: Proximate analysis and physicochemical properties of sugarcane bagasse, cassava periderm and maize stalk. In: Paper Presented at the IWAN, India

  10. Sri-Aprilia, N.A.; Abdul Khalil, H.P.S.; Bhat, A.H.; Dungani, R.; Hossain, M.S.: Exploring material properties of vinyl ester biocomposites filled carbonized Jatropha seed shell. BioResources 9(3), 4888–4898 (2014). https://doi.org/10.15376/biores.9.3.4888-4898

    Article  Google Scholar 

  11. Bledzki, A.K.; Mamun, A.A.; Volk, J.: Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Compos. Sci. Technol. 70(5), 840–846 (2010). https://doi.org/10.1016/j.compscitech.2010.01.022

    Article  Google Scholar 

  12. Bello, S.A.; Agunsoye, J.O.; Adebisi, J.A.; Kolawole, F.O.; Suleiman, B.H.: Physical properties of coconut shell nano-particles. Kathmandu Univ. J. Sci., Eng. Technol. 12(1), 63–79 (2016)

    Article  Google Scholar 

  13. Khalil, H.P.S.A.; Noriman, N.Z.; Ahmad, M.N.; Ratnam, M.M.; Fuaad, N.A.N.: Polyester composites filled carbon black and activated carbon from bamboo (Gigantochloa scortechinii): physical and mechanical properties. J. Reinf. Plast. Compos. 26(3), 305–320 (2016). https://doi.org/10.1177/0731684407065066

    Article  Google Scholar 

  14. Abdul Khalil, H.P.S.; Firoozian, P.; Bakare, I.O.; Akil, H.M.; Noor, A.M.: Exploring biomass based carbon black as filler in epoxy composites: flexural and thermal properties. Mater. Des. 31(7), 3419–3425 (2010). https://doi.org/10.1016/j.matdes.2010.01.044

    Article  Google Scholar 

  15. Samantrai, S.P.; Raghavendra, G.; Acharya, S.K.: Effect of carbonization temperature and fibre content on the abrasive wear of rice husk char reinforced epoxy composite. Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol. 228(4), 463–469 (2014). https://doi.org/10.1177/1350650113516435

    Article  Google Scholar 

  16. Ojha, S.; Acharya, S.K.; Raghavendra, G.: A novel approach to utilize waste carbon as reinforcement in thermoset composite. Proc. Inst. Mech. Eng., Part E: J. Process Mech. Eng. 230(4), 263–273 (2014). https://doi.org/10.1177/0954408914547118

    Article  Google Scholar 

  17. Hassan, S.B.; Oghenevweta, E.J.; Aigbodion, V.S.: Potentials of maize stalk ash as reinforcement in polyster composites. J. Miner. Mater. Charact. Eng. 11(4), 445 (2012)

    Google Scholar 

  18. Pokropivny, V.; Lohmus, R.; Hussainova, I.; Pokropivny, A.; Vlassov, S.: Introduction to nanomaterials and nanotechnology. Tartu University Press, Tartu (2007)

    Google Scholar 

  19. Bello, S.A.; Hassan, S.B.; Agunsoye, J.O.; Kana, M.G.Z.; Raheem, I.A.: Synthesis of uncarbonised coconut shell nano-particles: characterisation and particle size determination. Tribol. Ind. 37(2), 257–263 (2015)

    Google Scholar 

  20. Hassan, S.B.; Agunsoye, J.O.; Bello, S.A.: Ball milling synthesis of Al (1050) particles: morphological study and particle size determination. Ind. Eng. Lett. 5(11), 22–27 (2015)

    Google Scholar 

  21. Kolawole, F.O.; Kolawole, S.K.; Agunsoye, J.O.; Bello, S.A.; Adebisi, J.A.; Soboyejo, W.O.; Hassan, S.B.: Synthesis and characterization of cassava bark nano-particles. MRS Adv. 3(42–43), 2519–2526 (2018). https://doi.org/10.1557/adv.2018.412

    Article  Google Scholar 

  22. Hanna, W.; Maung, K.; El-Danaf, E.A.; Almajid, A.A.; Soliman, M.S.; Mohamed, F.A.: Nanocrystalline 6061 Al powder fabricated by cryogenic milling and consolidated via high frequency induction heat sintering. Adv. Mater. Sci. Eng. 2014, 1–9 (2014). https://doi.org/10.1155/2014/921017

    Article  Google Scholar 

  23. Bello, S.A.; Agunsoye, J.O.; Hassan, S.B.: Synthesis of coconut shell nano-particles via a top down approach: assessment of milling duration on the particle sizes and morphologies of coconut shell nano-particles. Mater. Lett. 159, 514–519 (2015). https://doi.org/10.1016/j.matlet.2015.07.063

    Article  Google Scholar 

  24. Bello, S.A.; Agunsoye, J.O.; Adebisi, J.A.; Anyanwu, J.E.; Bamigbaiye, A.A.; Hassan, S.B.: Potential of carbonised coconut shell as a ball-milling interface for synthesis of aluminium (1xxx) nano-particles. Ann. Fac. Eng. 15(2), 149–157 (2017)

    Google Scholar 

  25. Bello, S.A.; Agunsoye, J.O.; Adebisi, J.A.; Suleiman, B.H.: Effects of aluminium particles on mechanical and morphological properties of epoxy nano-composites. Acta Period. Technol. 48, 25–38 (2017)

    Article  Google Scholar 

  26. Bello, S.A.; Agunsoye, J.O.; Adebisi, J.A.; Raji, N.K.; Adeyemo, R.G.; Alabi, A.G.F.; Hassan, S.B.: Flexural performances of epoxy aluminium particulate composites. Eng. J. 22(4), 97–107 (2018). https://doi.org/10.4186/ej.2018.22.4.97

    Article  Google Scholar 

  27. Bello, S.A.; Agunsoye, J.O.; Adebisi, J.A.; Adeyemo, R.G.; Hassan, S.B.: Optimization of tensile properties of epoxy aluminum particulate composites using regression models. J. King Saud. Univ. Sci. Press (2018). https://doi.org/10.1016/j.jksus.2018.06.002

    Article  Google Scholar 

  28. Hassan, S.B., Agunsoye, J.O., Bello, S.A., Adebisi, J.A., Agboola, J.B.: Microstructure and mechanical properties of coconut shell reinforced epoxy composites In: Materials Science and Technology 2018 (MS&T18). Greater Columbus Convention Center, Columbus, pp. 1312–1318. Materials Science and Technology (2018)

  29. Agunsoye, J.O.; Odumosu, A.K.; Dada, O.: Novel epoxy-carbonized coconut shell nano-particles composites for car bumper application. Int. J. Adv. Manuf. Technol. 102(1–4), 893–899 (2019). https://doi.org/10.1007/s00170-018-3206-0

    Article  Google Scholar 

  30. Fidelis, C.; Piwai, S.; Benias, C.N.; Guyo, U.; Mambo, M.: Maize stalk as reinforcement in natural rubber composites. Int. J. Sci. Technol. Res. 2(6), 263–271 (2013)

    Google Scholar 

  31. Hassan, S.B.; Oghenevweta, J.E.; Aigbodion, V.S.: Morphological and mechanical properties of carbonized waste maize stalk as reinforcement for eco-composites. Compos. B Eng. 43(5), 2230–2236 (2012). https://doi.org/10.1016/j.compositesb.2012.02.003

    Article  Google Scholar 

  32. Saravana Bavan, D.; Mohan Kumar, G.C.: Morphological and thermal properties of maize fiber composites. Fibers Polym. 13(7), 887–893 (2012). https://doi.org/10.1007/s12221-012-0887-0

    Article  Google Scholar 

  33. Sarki, J.; Hassan, S.B.; Aigbodion, V.S.; Oghenevweta, J.E.: Potential of using coconut shell particle fillers in eco-composite materials. J. Alloy. Compd. 509(5), 2381–2385 (2011). https://doi.org/10.1016/j.jallcom.2010.11.025

    Article  Google Scholar 

  34. Peters, S.T.: Handbook of Composites, 2nd edn. Springer, Dordrecht (1998)

    Book  Google Scholar 

  35. Yang, F.; Yan, G.; Wang, Q.Y.; Xiong, X.M.; Li, S.Q.; Liu, G.Q.; Feng, J.Q.; Pang, Y.C.; Li, C.S.; Feng, Y.; Zhang, P.X.: The effect of high-energy ball milling on the microstructure and properties of Ti-doped MgB2 bulks and wires. Phys. Proc. 65, 157–160 (2015). https://doi.org/10.1016/j.phpro.2015.05.090

    Article  Google Scholar 

  36. Wolff, M.F.H.; Antonyuk, S.; Heinrich, S.; Schneider, G.A.: Attritor-milling of poly(amide imide) suspensions. Particuology 17, 92–96 (2014). https://doi.org/10.1016/j.partic.2013.11.005

    Article  Google Scholar 

  37. Breitung-Faes, S.; Kwade, A.: Nano particle production in high-power-density mills. Chem. Eng. Res. Des. 86(4), 390–394 (2008). https://doi.org/10.1016/j.cherd.2007.11.006

    Article  Google Scholar 

  38. Dewa, M.D.K.; Wiryolukito, S.; Suwarno, H.: Hydrogen absorption capacity of Fe–Ti–Al alloy prepared by high energy ball milling. Energy Proc. 68, 318–325 (2015). https://doi.org/10.1016/j.egypro.2015.03.262

    Article  Google Scholar 

  39. Liu, T.; Shen, H.; Wang, C.; Chou, W.: Structure evolution of Y2O3 nano-particle/Fe composite during mechanical milling and annealing. Prog. Nat. Sci.: Mater. Int. 23(4), 434–439 (2013). https://doi.org/10.1016/j.pnsc.2013.06.009

    Article  Google Scholar 

  40. Loh, Z.H.; Samanta, A.K.; Sia Heng, P.W.: Overview of milling techniques for improving the solubility of poorly water-soluble drugs. Asian J. Pharm. Sci. 10(4), 255–274 (2015). https://doi.org/10.1016/j.ajps.2014.12.006

    Article  Google Scholar 

  41. Zhang, S.; Liu, J.; Feng, J.; Li, C.; Ma, X.; Zhang, P.: Optimization of FeSe superconductors with the high-energy ball milling aided sintering process. J. Mater. 1(2), 118–123 (2015). https://doi.org/10.1016/j.jmat.2015.04.004

    Article  Google Scholar 

  42. Zhang, X.; Mu, H.; Huang, X.; Fu, Z.; Zhu, D.; Ding, H.: Cryogenic milling of aluminium-lithium alloys: thermo-mechanical modelling towards fine-tuning of part surface residual stress. Proc. CIRP 31, 160–165 (2015). https://doi.org/10.1016/j.procir.2015.03.055

    Article  Google Scholar 

  43. Wan, Y.-J.; Tang, L.-C.; Yan, D.; Zhao, L.; Li, Y.-B.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q.: Improved dispersion and interface in the graphene/epoxy composites via a facile surfactant-assisted process. Compos. Sci. Technol. 82, 60–68 (2013). https://doi.org/10.1016/j.compscitech.2013.04.009

    Article  Google Scholar 

  44. Wan, Y.-J.; Gong, L.-X.; Tang, L.-C.; Wu, L.-B.; Jiang, J.-X.: Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Compos. A Appl. Sci. Manuf. 64, 79–89 (2014). https://doi.org/10.1016/j.compositesa.2014.04.023

    Article  Google Scholar 

  45. Tang, L.-C.; Wan, Y.-J.; Peng, K.; Pei, Y.-B.; Wu, L.-B.; Chen, L.-M.; Shu, L.-J.; Jiang, J.-X.; Lai, G.-Q.: Fracture toughness and electrical conductivity of epoxy composites filled with carbon nanotubes and spherical particles. Compos. A Appl. Sci. Manuf. 45, 95–101 (2013). https://doi.org/10.1016/j.compositesa.2012.09.012

    Article  Google Scholar 

  46. Tang, L.-C.; Wan, Y.-J.; Yan, D.; Pei, Y.-B.; Zhao, L.; Li, Y.-B.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q.: The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60, 16–27 (2013). https://doi.org/10.1016/j.carbon.2013.03.050

    Article  Google Scholar 

  47. Bello, S.A.: Development and Characterisation of Epoxy-Aluminium-Coconut Shell Particulate Hybrid Nano-composites for Automobile Applications. University of Lagos, Lagos (2017)

    Google Scholar 

  48. William Jr., D.C.: Materials Science and Engineering an Introduction, 7th edn. Wiley, Hoboken (2007)

    Google Scholar 

  49. Dotan, A.: Biobased Thermosets, pp. 577–622 (2014). https://doi.org/10.1016/b978-1-4557-3107-7.00015-4

  50. Agunsoye, J.O.; Aigbodion, V.S.: Bagasse filled recycled polyethylene bio-composites: morphological and mechanical properties study. Results Phys. 3, 187–194 (2013). https://doi.org/10.1016/j.rinp.2013.09.003

    Article  Google Scholar 

  51. Asuke, F.; Aigbodion, V.S.; Abdulwahab, M.; Fayomi, O.S.I.; Popoola, A.P.I.; Nwoyi, C.I.; Garba, B.: Effects of bone particle on the properties and microstructure of polypropylene/bone ash particulate composites. Results Phys. 2, 135–141 (2012). https://doi.org/10.1016/j.rinp.2012.09.001

    Article  Google Scholar 

  52. Abiko, H.; Furuse, M.; Takano, T.: Reduction of adsorption capacity of coconut shell activated carbon for organic vapors due to moisture contents. Ind. Health 48, 427–437 (2010)

    Article  Google Scholar 

  53. Akram, M.; Taha, I.; Ghobashy, M.M.: Potential of carbon particle reinforced polypropylene formed in situ through the pyrolysis of carboxymethylcellulose. Compos. Commun. 1, 6–14 (2016). https://doi.org/10.1016/j.coco.2016.07.005

    Article  Google Scholar 

  54. Bello, S.A.; Raheem, I.A.; Raji, N.K.: Study of tensile properties, fractography and morphology of aluminium (1xxx)/coconut shell micro particle composites. J. King Saud. Univ. Eng. Sci. 29, 269–277 (2017). https://doi.org/10.1016/j.jksues.2015.10.001

    Article  Google Scholar 

  55. Aigbodion, V.S.; Hassan, S.B.; Oghenevweta, J.E.: Microstructural analysis and properties of Al–Cu–Mg/bagasse ash particulate composites. J. Alloy. Compd. 497(1–2), 188–194 (2010). https://doi.org/10.1016/j.jallcom.2010.02.190

    Article  Google Scholar 

  56. Mohammad, S., Laurentiu, N., Anwarul, H.: Development of High-Strength and Highly Ductile Hypo-Eutectic Al–Si Alloys by Nano-refining the Constituent Phases. In: Paper Presented at the TMS. The Minerals, Metals and Materials Society

  57. Srivastava, V.K.; Verma, A.: Mechanical behaviour of copper and aluminium particles reinforced epoxy resin composites. Am. J. Mater. Sci. 5(4), 84–89 (2015). https://doi.org/10.5923/j.materials.20150504.02

    Article  Google Scholar 

  58. Pargi, M.N.F.; Teh, P.L.; Hussiensyah, S.; Yeoh, C.K.; Abd Ghani, S.: Recycled-copper-filled epoxy composites: the effect of mixed particle size. Int. J. Mech. Mater. Eng. 10(1), 3 (2015). https://doi.org/10.1186/s40712-015-0030-2

    Article  Google Scholar 

  59. Ozsoy, N.; Ozsoy, M.; Mimaroglu, A.: Comparison of mechanical chracteristics of chopped bamboo and chopped coconut shell reinforced epoxy matrix composite materials. Eur. Int. J. Sci. Technol. 3(8), 15–20 (2014)

    Google Scholar 

Download references

Funding

No funding was received on this work. It is self-sponsored.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sefiu Adekunle Bello.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest on this work.

Ethical Approval

Authors declare that all third parties’ rights in line with ethical standards are respected.

Informed Consent

This research does not involve human participant nor animal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agunsoye, J.O., Bamigbaiye, A.A., Bello, S.A. et al. Mechanical Properties of Maize Stalk Nano-particle Reinforced Epoxy Composites. Arab J Sci Eng 45, 5087–5097 (2020). https://doi.org/10.1007/s13369-020-04345-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04345-5

Keywords

Navigation