Skip to main content

Advertisement

Log in

Effects of particle size on structural, physical, mechanical and tribology behaviour of agricultural waste (corncob micro/nano-filler) based epoxy biocomposites

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Solid waste management is one of the major problems in the twenty-first century. Utilizations of the food/Agro waste materials are crucial to reduce the pollution from the environment. The development of sustainable and biodegradable biocomposites from these wastages is gaining much attention in the research fields. This paper deals with the consumption of corncob waste after the use of corn seeds to develop biocomposites. The biocomposites have been fabricated at five different particles size of corncob (425–500 µm, 325–400 µm, 225-300 µm, 125-200 µm and 25–100 µm) with epoxy matrix and characterized their physical, mechanical, thermal and tribology behaviour. The results analysed that the performances of developed biocomposites increased with reducing the particles sizes. CCF-5 bio-fillers recorded 23% higher crystallinity compared to CCF-1 that increased the interfacial interaction of reinforcements and reduced the water uptake capabilities. The mechanical performances of biocomposites like tensile strength (41.47 MPa), flexural strength (48.67 MPa), and hardness (46) have been examined maximum for CCH-4 while, tensile modulus (1.45GPa) and flexural modulus (3.35GPa) are maximum for CCH-5 biocomposites. The wear and friction behaviour of the developed biocomposites have been investigated by varying the applied load (10 N, 15 N, and 20 N) at dry and wet conditions using a pin on the disc wear testing machine. The CCH-4 biocomposites showed lowest volume loss and specific wear rate at every loading condition as well as high thermal stability with 28.168% of residual mass at 800 ºC. The addition of corncob bio-filler resulted in economical and cost-saving materials with improved mechanical properties and wear resistance compared to conventional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Chen B, Li X, Li X et al (2018) Hierarchical carbon fiber-SiO2 hybrid/polyimide composites with enhanced thermal, mechanical, and tribological properties. Polym Compos 39:E1626–E1634. https://doi.org/10.1002/pc.24570

    Article  Google Scholar 

  2. Kumar S, Singh KK, Ramkumar J (2020) Comparative study of the influence of graphene nanoplatelets filler on the mechanical and tribological behavior of glass fabric-reinforced epoxy composites. Polym Compos 41:5403–5417. https://doi.org/10.1002/pc.25804

    Article  Google Scholar 

  3. Keerthiveettil Ramakrishnan S, Vijayananth K, Pudhupalayam Muthukutti G et al (2022) The effect of various composite and operating parameters in wear properties of epoxy-based natural fiber composites. J Mater Cycles Waste Manage 24:667–679. https://doi.org/10.1007/s10163-022-01357-1

    Article  Google Scholar 

  4. Agrawal S, Singh KK, Sarkar PK (2016) A comparative study of wear and friction characteristics of glass fibre reinforced epoxy resin, sliding under dry, oil-lubricated and inert gas environments. Tribol Int 96:217–224. https://doi.org/10.1016/j.triboint.2015.12.033

    Article  Google Scholar 

  5. Kumar S, Singh KK (2020) Tribological behaviour of fibre-reinforced thermoset polymer composites: a review proceedings of the institution of mechanical engineers, part L. J Mater Des Appl 234:1439–1449. https://doi.org/10.1177/1464420720941554

    Article  Google Scholar 

  6. Kumar A, Saha A, Kumar S (2021) Structural analysis of sol-gel derived TiO2 nanoparticles: a critical impact of TiO2 nanoparticles on thermo-mechanical mechanism of glass fiber polymer composites. J Polym Res. https://doi.org/10.1007/s10965-021-02799-1

    Article  Google Scholar 

  7. Chikodi Daniel-Mkpume C, Ahaiwe RC, Chigozie et al (2022) Potential end of life application of African star apple shell and waste toner powder as composite filler materials. J Mater Cycl Waste Manag 24:680–691

    Article  Google Scholar 

  8. Kumar S, Singh KK, Ramkumar J (2021) The effects of graphene nanoplatelets on the tribological performance of glass fiber-reinforced epoxy composites. Proceed Instit Mech Eng Part J J Eng Tribol 235:1514–1525. https://doi.org/10.1177/1350650120965756

    Article  Google Scholar 

  9. Gaurav A, Singh KK (2019) Effect of pristine MWCNTs on the fatigue life of GFRP laminates-an experimental and statistical evaluation. Compos B Eng 172:83–96. https://doi.org/10.1016/j.compositesb.2019.05.069

    Article  Google Scholar 

  10. Kumar S, Singh KK (2019) Tribological performances of woven carbon fabric/epoxy composites under dry and oil lubrication condition: an experimental investigation. Trend Mater Eng. https://doi.org/10.1007/978-981-13-9016-6_5

    Article  Google Scholar 

  11. Gupta H, Kumar H, Avneesh et al (2022) Preparation and characterization of bio-composite films obtained from coconut coir and groundnut shell for food packaging. J Mater Cycles Waste Manage 24:569–581. https://doi.org/10.1007/s10163-021-01343-z

    Article  Google Scholar 

  12. Holmberg K, Erdemir A (2017) Influence of tribology on global energy consumption, costs and emissions. Friction 5:263–284. https://doi.org/10.1007/s40544-017-0183-5

    Article  Google Scholar 

  13. Prajapati PK, Kumar S, Singh KK (2020) Optimization of Tribological Behavior of CFRP composites under dry sliding condition using Taguchi Method. Mater Today Proceed 21:1320–1329. https://doi.org/10.1016/j.matpr.2020.01.169

    Article  Google Scholar 

  14. Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos A Appl Sci Manuf 77:1–25. https://doi.org/10.1016/j.compositesa.2015.06.007

    Article  Google Scholar 

  15. Adekomaya O, Jamiru T, Sadiku R, Huan Z (2017) Negative impact from the application of natural fibers. J Clean Prod 143:843–846. https://doi.org/10.1016/j.jclepro.2016.12.037

    Article  Google Scholar 

  16. Kumar S, Saha A (2021) Effects of stacking sequence of pineapple leaf-flax reinforced hybrid composite laminates on mechanical characterization and moisture resistant properties. Proc Inst Mech Eng C J Mech Eng Sci. https://doi.org/10.1177/09544062211023105

    Article  Google Scholar 

  17. Sumesh KR, Kavimani V, Rajeshkumar G et al (2021) Effect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy-based composites for mechanical and morphological study. J Mater Cycl Waste Manag 23:1277–1288. https://doi.org/10.1007/s10163-021-01196-6

    Article  Google Scholar 

  18. Yan L, Kasal B, Huang L (2016) A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering. Compos B Eng 92:94–132. https://doi.org/10.1016/j.compositesb.2016.02.002

    Article  Google Scholar 

  19. Balaji A, Saravanan R, Purushothaman R et al (2021) Investigation of thermal energy storage (TES) with lotus stem biocomposite block using PCM. Clean Eng Technol. https://doi.org/10.1016/J.CLET.2021.100146

    Article  Google Scholar 

  20. Vinod A, Sanjay MR, Suchart S, Jyotishkumar P (2020) Renewable and sustainable biobased materials: an assessment on biofibers, biofilms, biopolymers and biocomposites. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.120978

    Article  Google Scholar 

  21. Ramesh M, Palanikumar K, Reddy KH (2017) Plant fibre based bio-composites: sustainable and renewable green materials. Renew Sustain Energy Rev 79:558–584. https://doi.org/10.1016/j.rser.2017.05.094

    Article  Google Scholar 

  22. Saha A, Kumar S, Kumar A (2021) Influence of pineapple leaf particulate on mechanical, thermal and biodegradation characteristics of pineapple leaf fiber reinforced polymer composite. J Polym Res. https://doi.org/10.1007/s10965-021-02435-y

    Article  Google Scholar 

  23. Saha A, Kumar S, Zindani D (2021) Investigation of the effect of water absorption on thermomechanical and viscoelastic properties of flax-hemp-reinforced hybrid composite. Polym Compos 42:4497–4516. https://doi.org/10.1002/pc.26164

    Article  Google Scholar 

  24. Katami T, Yasuhara A, Shibamoto T (2004) Formation of dioxins from incineration of foods found in domestic garbage. Environ Sci Technol 38:1062–1065. https://doi.org/10.1021/es030606y

    Article  Google Scholar 

  25. Galanakis CM (2012) Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci Technol 26:68–87. https://doi.org/10.1016/j.tifs.2012.03.003

    Article  Google Scholar 

  26. Barari B, Omrani E, Dorri Moghadam A et al (2016) Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: an attempt to fabricate and scale the “Green” composite. Carbohyd Polym 147:282–293. https://doi.org/10.1016/j.carbpol.2016.03.097

    Article  Google Scholar 

  27. Bolokang AS (2019) Designing a Sn-slag composite with possible non-toxic applications to provide a pure metal casting environment. J Clean Prod 211:1313–1321. https://doi.org/10.1016/j.jclepro.2018.11.250

    Article  Google Scholar 

  28. Erdoğan A, Gök MS, Koç V, Günen A (2019) Friction and wear behavior of epoxy composite filled with industrial wastes. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.07.063

    Article  Google Scholar 

  29. Vigneshwaran K, Venkateshwaran N, Srinivasan SP (2018) Mechanical, thermal and vibration characteristics of Dosinia exoleta dispersed polymer composites. Int J Polym Anal Charact 23:646–656. https://doi.org/10.1080/1023666X.2018.1490563

    Article  Google Scholar 

  30. Sajith S, Arumugam V, Dhakal HN (2017) Comparison on mechanical properties of lignocellulosic flour epoxy composites prepared by using coconut shell, rice husk and teakwood as fillers. Polym Testing 58:60–69. https://doi.org/10.1016/j.polymertesting.2016.12.015

    Article  Google Scholar 

  31. Alothman OY, Shaikh HM, Alshammari BA, Jawaid M (2022) Structural, morphological and thermal properties of nano filler produced from date palm-based micro fibers (Phoenix dactylifera L.). J Polym Environ 30:622–630. https://doi.org/10.1007/s10924-021-02224-0

    Article  Google Scholar 

  32. Sharma H, Singh I, Misra JP (2021) Effect of particle size on physical, thermal and mechanical behaviour of epoxy composites reinforced with food waste fillers. Proc Inst Mech Eng C J Mech Eng Sci 235:3029–3035. https://doi.org/10.1177/0954406220958434

    Article  Google Scholar 

  33. Sharma H, Misra JP, Singh I (2020) Friction and wear behaviour of epoxy composites reinforced with food waste fillers. Comp Commun. https://doi.org/10.1016/j.coco.2020.100436

    Article  Google Scholar 

  34. Barczewski M, Sałasińska K, Szulc J (2019) Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: a study into mechanical behavior related to structural and rheological properties. Polym Testing 75:1–11. https://doi.org/10.1016/j.polymertesting.2019.01.017

    Article  Google Scholar 

  35. Kishore Chowdari G, Krishna Prasad DVV, Devireddy SBR (2019) Physical and thermal behaviour of areca and coconut shell powder reinforced epoxy composites. In: materials today: proceedings. Elsevier Ltd, 1402–1405. https://doi.org/10.1016/j.matpr.2020.02.282

  36. Kumar S, Saha A (2021) Graphene nanoplatelets/organic wood dust hybrid composites: physical, mechanical and thermal characterization. Iran Poly J (Engl Ed) 30:935–951. https://doi.org/10.1007/s13726-021-00946-5

    Article  Google Scholar 

  37. Zou Y, Fu J, Chen Z, Ren L (2021) Field decomposition of corn cob in seasonally frozen soil and its intrinsic influencing factors: the case of northeast China. Agriculture (Switzerland). https://doi.org/10.3390/agriculture11060556

    Article  Google Scholar 

  38. Hong J, Ren L, Hong J, Xu C (2016) Environmental impact assessment of corn straw utilization in China. J Clean Prod 112:1700–1708. https://doi.org/10.1016/j.jclepro.2015.02.081

    Article  Google Scholar 

  39. Tribot A, Delattre C, Badel E et al (2018) Design of experiments for bio-based composites with lignosulfonates matrix and corn cob fibers. Ind Crops Prod 123:539–545. https://doi.org/10.1016/j.indcrop.2018.07.019

    Article  Google Scholar 

  40. Ramos RRF, Siqueira DD, Wellen RMR et al (2019) Development of green composites based on polypropylene and corncob agricultural residue. J Polym Environ 27:1677–1685. https://doi.org/10.1007/s10924-019-01462-7

    Article  Google Scholar 

  41. de Oliveira ML, de Souza LGM, Pereira Neto RV, de Lima JC (2020) Obtaining and characterization of a composite with polymer matrix and corn cob waste filler. Res Soc Develop 9:e32791210849

    Article  Google Scholar 

  42. Kumar S, Zindani D, Bhoomani R, Kumar KS (2019) Study the mechanical properties of corncob husk filler reinforced epoxy composite. In: AIP conference proceedings. American institute of physics Inc. https://doi.org/10.1063/1.5141265

  43. Ajimotokan HA, Ibitoye SE, Odusote JK et al (2019) Physico-mechanical properties of composite briquettes from corncob and rice husk. J Biores Bioprod 4:159–165

    Google Scholar 

  44. Pratheep VG, Priyanka EB, Thangavel S et al (2021) Investigation and analysis of corn cob, coir pith with wood plastic composites. Mater Today Proceed Els Ltd. https://doi.org/10.1016/j.matpr.2020.02.288

    Article  Google Scholar 

  45. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angewand Chem Int Ed 44:3358–3393. https://doi.org/10.1002/anie.200460587

    Article  Google Scholar 

  46. Alsubari S, Zuhri MYM, Sapuan SM et al (2021) Potential of natural fiber reinforced polymer composites in sandwich structures: a review on its mechanical properties. Polymers (Basel) 13:1–20. https://doi.org/10.3390/polym13030423

    Article  Google Scholar 

  47. Varma AK, Mondal P (2016) Physicochemical characterization and pyrolysis kinetic study of sugarcane bagasse using thermogravimetric analysis. J Energy Res Technol Transact ASME. https://doi.org/10.1115/1.4032729

    Article  Google Scholar 

  48. Li S, Xu S, Liu S et al (2004) Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process Technol. https://doi.org/10.1016/j.fuproc.2003.11.043

    Article  Google Scholar 

  49. Subramanian SG, Rajkumar R, Ramkumar T (2021) Characterization of natural cellulosic fiber from cereus hildmannianus. J Nat Fib 18:343–354. https://doi.org/10.1080/15440478.2019.1623744

    Article  Google Scholar 

  50. ASTM Standard D 2734-70 (Reapproved 1985) Standard test method for void content of reinforced plastics. American society for testing and materials.

  51. Saha A, Kumar S (2022) Effects of graphene nanoparticles with organic wood particles: a synergistic effect on the structural, physical, thermal, and mechanical behavior of hybrid composites. Polym Adv Technol. https://doi.org/10.1002/PAT.5772

    Article  Google Scholar 

  52. Cussler EL (1984) Diffusion, mass transfer in fluid systems. Cambridge University Press

    Google Scholar 

  53. ASTM D2240-15 (2021) Standard test method for rubber property—durometer hardness, ASTM International, West Conshohocken, PA. https://www.astm.org

  54. ASTM D638-14 (2014) Standard test method for tensile properties of plastics, ASTM International, West Conshohocken, PA. https://www.astm.org

  55. ASTM D790-03 (2003) Standard est methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, ASTM International, West Conshohocken, PA. https://www.astm.org

  56. ASTM G99-17 (2017) Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus, ASTM International, West Conshohocken, PA. https://www.astm.org

  57. Suciyati SW, Manurung P, Sembiring S, Situmeang R (2021) Comparative study of Cladophora sp. cellulose by using FTIR and XRD. In: J Phys Conf Ser IOP Publ Ltd. https://doi.org/10.1088/1742-6596/1751/1/012075

    Article  Google Scholar 

  58. Bhuvaneshwaran M, Subramani SP, Palaniappan SK et al (2021) Natural cellulosic fiber from coccinia indica stem for polymer composites: extraction and characterization. J Nat Fib 18:644–652. https://doi.org/10.1080/15440478.2019.1642826

    Article  Google Scholar 

  59. Rajeshkumar G, Devnani GL, Maran JP et al (2021) Characterization of novel natural cellulosic fibers from purple bauhinia for potential reinforcement in polymer composites. Cellulose 28:5373–5385. https://doi.org/10.1007/s10570-021-03919-2

    Article  Google Scholar 

  60. Hu M, Wang C, Lu C et al (2020) Investigation on the classified extraction of the bamboo fiber and its properties. J Nat Fib 17:1798–1808. https://doi.org/10.1080/15440478.2019.1599311

    Article  Google Scholar 

  61. Sumesh KR, Kavimani V, Rajeshkumar G et al (2021) Effect of banana, pineapple and coir fly ash filled with hybrid fiber epoxy based composites for mechanical and morphological study. J Mater Cyc Waste Manag 23:1277–1288. https://doi.org/10.1007/s10163-021-01196-6

    Article  Google Scholar 

  62. Sharma H, Singh I, Misra JP (2019) Mechanical and thermal behaviour of food waste (Citrus limetta peel) fillers–based novel epoxy composites. Polym Polym Compos 27:527–535. https://doi.org/10.1177/0967391119851012

    Article  Google Scholar 

  63. Khodadadi A, Golestanian H, Aghadavoudi F (2022) Two modified multiscale modeling approaches for determination of two-phase and hybrid nanocomposite properties. Proc Inst Mech Eng C J Mech Eng Sci 236:496–510. https://doi.org/10.1177/09544062211030306

    Article  Google Scholar 

  64. Divya D, Devi SY, Indran S et al (2022) Extraction and modification of natural plant fibers—A comprehensive review. Plant fibers, their composites, and applications. Text Instit Book Ser. https://doi.org/10.1016/B978-0-12-824528-6.00002-3

    Article  Google Scholar 

  65. Ganesh S, Keerthiveettil Ramakrishnan S, Palani V et al (2022) Investigation on the mechanical properties of ramie/kenaf fibers under various parameters using GRA and TOPSIS methods. Polym Compos 43:130–143. https://doi.org/10.1002/PC.26362

    Article  Google Scholar 

  66. Mohankumar D, Rajeshkumar L, Muthukumaran N et al (2022) Effect of fiber orientation on tribological behaviour of Typha angustifolia natural fiber reinforced composites. Mater Today Proceed. https://doi.org/10.1016/j.matpr.2022.02.062

    Article  Google Scholar 

  67. Gapsari F, Purnowidodo A, Setyarini PH et al (2022) Properties of organic and inorganic filler hybridization on Timoho Fiber-reinforced polyester polymer composites. Polym Compos 43:1147–1156. https://doi.org/10.1002/pc.26443

    Article  Google Scholar 

  68. Sumesh KR, Saikrishnan G, Pandiyan P et al (2021) The influence of different parameters in tribological characteristics of pineapple/sisal/TiO2 filler incorporation. J Indust Text 51:8626S-8644S. https://doi.org/10.1177/15280837211022614

    Article  Google Scholar 

  69. Jawaid M, Chee SS, Asim M et al (2022) Sustainable kenaf/bamboo fibers/clay hybrid nanocomposites: properties, environmental aspects and applications. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.129938

    Article  Google Scholar 

  70. Bajpai PK, Singh I, Madaan J (2013) Tribological behavior of natural fiber reinforced PLA composites. Wear 297:829–840. https://doi.org/10.1016/j.wear.2012.10.019

    Article  Google Scholar 

  71. Seki Y, Sarikanat M, Sever K, Durmuşkahya C (2013) Extraction and properties of Ferula communis (chakshir) fibers as novel reinforcement for composites materials. Compos B Eng 44:517–523. https://doi.org/10.1016/j.compositesb.2012.03.013

    Article  Google Scholar 

  72. Fiore V, Scalici T, Valenza A (2014) Characterization of a new natural fiber from Arundo donax L. as potential reinforcement of polymer composites. Carbohyd Polym 106:77–83. https://doi.org/10.1016/j.carbpol.2014.02.016

    Article  Google Scholar 

  73. Lila MK, Komal UK, Singh Y, Singh I (2020) Extraction and characterization of munja fibers and its potential in the biocomposites. J Nat Fib. https://doi.org/10.1080/15440478.2020.1821287

    Article  Google Scholar 

  74. Thipperudrappa S, Kini AU, Hiremath A (2019) An experimental study to evaluate the effect of TiO2 nanoparticles on the strength and stability of unidirectional glass fiber reinforced epoxy composites. Mater Res Exp. https://doi.org/10.1088/2053-1591/ab5031

    Article  Google Scholar 

  75. Narish S, Yousif BF, Rilling D (2011) Adhesive wear of thermoplastic composite based on kenaf fibres. Proceed Instit Mech Eng Part J: J Eng Tribol 225:101–109. https://doi.org/10.1177/2041305x10394053

    Article  Google Scholar 

  76. Yousif BF, El-Tayeb NSM (2008) Wear and friction characteristics of CGRP composite under wet contact condition using two different test techniques. Wear 265:856–864. https://doi.org/10.1016/j.wear.2008.01.016

    Article  Google Scholar 

Download references

Funding

The author(s) do not receive any financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abir Saha.

Ethics declarations

Conflict of interest

The current research article does not contain any study with human or animal participants performed by the authors.

Ethical approval

The article does not include human participants and/ or animals’ research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Saha, A. Effects of particle size on structural, physical, mechanical and tribology behaviour of agricultural waste (corncob micro/nano-filler) based epoxy biocomposites. J Mater Cycles Waste Manag 24, 2527–2544 (2022). https://doi.org/10.1007/s10163-022-01499-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01499-2

Keywords

Navigation