Skip to main content
Log in

Numerical Analysis of Crack Initiation Direction in Quasi-brittle Materials: Effect of T-Stress

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A two-dimensional finite element analysis was adopted to assess the effect of T-stress on predicting crack initiation angle in a quasi-brittle material. Asymmetric semicircular PMMA specimen containing a vertical edge crack subjected to three-point bending was employed. The specimen was assumed as an isotropic and homogeneous material. Relative crack length ratios of 0.3, 0.4, 0.5, 0.6 and 0.7 were examined. Several relative bottom span ratios were included to develop a wide range of mixed-mode I/II loading conditions. The conventional maximum tangential stress (MTS) criterion could not precisely predict the crack initiation angle through the total range of pure mode I to pure mode II. The generalized maximum tangential stress (GMTS) criterion showed a significant effect of T-stress on the numerical prediction of the crack initiation angles in PMMA specimens. In the present study, neglecting the T-stress in the MTS criterion overestimates the crack initiation angle. The numerical predictions using the GMTS criterion showed a good agreement with the relevant experimental data found in the literature. The ability of GMTS in predicting the crack initiation angle is improved by considering the T-stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The numerical data required to reproduce these findings cannot be shared at this time due to technical limitations.

Abbreviations

ASCB:

Asymmetric semicircular bend specimen

EMTSN:

Extended maximum tangential strain

FE:

Finite element

MTS:

Maximum tangential stress

MTSN:

Maximum tangential strain

GMTS:

Generalized maximum tangential stress

GSED:

Generalized strain energy density

PMMA:

Polymethylmethacrylate

SCB:

Semicircular bend specimen

SED:

Minimum strain energy density

SIF:

Stress intensity factor

a :

Crack length

da :

Smallest element size

a/R :

Ratio of crack length to disk radius

E :

Modulus of elasticity

G :

Maximum energy release rate

K I, K II :

Mode I and mode II SIFs, respectively

K IC :

Mode I fracture toughness

M e :

Mode mixity parameter

P :

Applied vertical load

R :

Semi-disk radius

r, θ :

Polar coordinate components

r c :

Fracture process zone size

S 1 , S 2 :

Left and right bottom span lengths, respectively

S 1 /R, S 2 /R :

Ratio of left span distance to disk radius and right span distance to disk radius, respectively

t :

Semi-disk thickness

T* :

Normalized T-stress

Y I , Y II :

Mode I and mode II geometry factors, respectively

ν :

Poisson’s ratio

θ o :

Crack initiation angle

σ t :

Uniaxial tensile strength

References

  1. Hammouda, M.M.I.; Fayed, A.S.: Modes I/II SIF of a diametrically compressed Brazilian disc having a central inclined crack with frictional surfaces. Fatigue Fract. Eng. Mater. Struct. 41, 856–868 (2018). https://doi.org/10.1111/ffe.12733

    Article  Google Scholar 

  2. Fayed, A.S.: Numerical analysis of mixed mode I/II stress intensity factors of edge slant cracked plates. Eng. Solid Mech. 5, 61–70 (2017). https://doi.org/10.5267/j.esm.2016.8.001

    Article  Google Scholar 

  3. Aliha, M.R.M.; Hosseinpour, G.R.; Ayatollahi, M.R.: Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock Mech. Rock Eng. 46, 1023–1034 (2013). https://doi.org/10.1007/s00603-012-0325-z

    Article  Google Scholar 

  4. Hammouda, M.M.I.; Pasha, R.A.; Fayed, A.S.: Modelling of cracking sites/development in axial dovetail joints of aero-engine compressor discs. Int. J. Fatigue 29, 30–48 (2007). https://doi.org/10.1016/j.ijfatigue.2006.02.049

    Article  Google Scholar 

  5. Lim, I.L.; Johnston, I.W.; Choi, S.K.; Boland, J.N.; Introduction, I.: Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 1-mode I. Int. J. Rock Mech. Min. Sci. 31, 185–197 (1994). https://doi.org/10.1016/0148-9062(94)90463-4

    Article  Google Scholar 

  6. Shahani, A.R.; Tabatabaei, S.A.: Computation of mixed mode stress intensity factors in a four-point bend specimen. Appl. Math. Model. (2008). https://doi.org/10.1016/j.apm.2007.04.001

    MATH  Google Scholar 

  7. Chang, S.H.; Lee, C.I.; Jeon, S.: Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Eng. Geol. 66, 79–97 (2002). https://doi.org/10.1016/S0013-7952(02)00033-9

    Article  Google Scholar 

  8. Khan, K.; Al-Shayea, N.A.: Effect of specimen geometry and testing method on mixed mode I–II fracture toughness of a limestone rock from Saudi Arabia. Rock Mech. Rock Eng. 33, 179–206 (2000). https://doi.org/10.1007/s006030070006

    Article  Google Scholar 

  9. Wei, M.D.; Dai, F.; Xu, N.W.; Liu, J.F.; Xu, Y.: Experimental and numerical study on the cracked chevron notched semi-circular bend method for characterizing the mode I fracture toughness of rocks. Rock Mech. Rock Eng. 49, 1595–1609 (2016). https://doi.org/10.1007/s00603-015-0855-2

    Article  Google Scholar 

  10. Mirsayar, M.M.M.; Berto, F.; Aliha, M.R.M.R.M.; Park, P.: Strain-based criteria for mixed-mode fracture of polycrystalline graphite. Eng. Fract. Mech. 156, 114–123 (2016). https://doi.org/10.1016/j.engfracmech.2016.02.011

    Article  Google Scholar 

  11. Elghazel, A.; Taktak, R.; Bouaziz, J.: Combined numerical and experimental mechanical characterization of a calcium phosphate ceramic using modified Brazilian disc and SCB specimen. Mater. Sci. Eng. A 670, 240–251 (2016). https://doi.org/10.1016/j.msea.2016.06.020

    Article  Google Scholar 

  12. Smith, D.J.; Ayatollahi, M.R.; Pavier, M.J.: On the consequences of T-stress in elastic brittle fracture. Proc. R. Soc. A Math. Phys. Eng. Sci. 462, 2415–2437 (2006). https://doi.org/10.1098/rspa.2005.1639

    Article  MATH  Google Scholar 

  13. Chong, K.P.; Kuruppu, M.D.: New specimen for fracture toughness determination for rock and other materials. Int. J. Fract. 26, R59–R62 (1984). https://doi.org/10.1007/BF01157555

    Article  Google Scholar 

  14. Xie, Y.; Cao, P.; Jin, J.; Wang, M.: Mixed mode fracture analysis of semi-circular bend (SCB) specimen: a numerical study based on extended finite element method. Comput. Geotech. 82, 157–172 (2017). https://doi.org/10.1016/j.compgeo.2016.10.012

    Article  Google Scholar 

  15. Kuruppu, M.D.; Obara, Y.; Ayatollahi, M.R.; Chong, K.P.; Funatsu, T.: ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen. Rock Mech. Rock Eng. 47, 267–274 (2014). https://doi.org/10.1007/s00603-013-0422-7

    Article  Google Scholar 

  16. Kataoka, M.; Mahdavi, E.; Funatsu, T.; Takehara, T.; Obara, Y.; Fukui, K.; Hashiba, K.: Estimation of mode I fracture toughness of rock by semi-circular bend test under confining pressure condition. Procedia Eng. 191, 886–893 (2017). https://doi.org/10.1016/j.proeng.2017.05.258

    Article  Google Scholar 

  17. Wu, P.F.; Liang, W.G.; Li, Z.G.; Cao, M.T.; Yang, J.F.: Investigations on mechanical properties and crack propagation characteristics of coal and sandy mudstone using three experimental methods. Rock Mech. Rock Eng. 50, 215–223 (2017). https://doi.org/10.1007/s00603-016-1048-3

    Article  Google Scholar 

  18. Mahdavi, E.; Obara, Y.; Ayatollahi, M.R.: Numerical investigation of stress intensity factor for semi-circular bend specimen with chevron notc. Eng. Solid Mech. 3, 235–244 (2015). https://doi.org/10.5267/j.esm.2015.7.001

    Article  Google Scholar 

  19. Ayatollahi, M.R.; Aliha, M.R.M.; Saghafi, H.: An improved semi-circular bend specimen for investigating mixed mode brittle fracture. Eng. Fract. Mech. 78, 110–123 (2011). https://doi.org/10.1016/j.engfracmech.2010.10.001

    Article  Google Scholar 

  20. Darban, H.; Haghpanahi, M.; Assadi, A.: Determination of crack tip parameters for ASCB specimen under mixed mode loading using finite element method. Comput. Mater. Sci. 50, 1667–1674 (2011). https://doi.org/10.1016/J.COMMATSCI.2010.12.027

    Article  Google Scholar 

  21. Sutton, M.A.; Deng, X.; Ma, F.; Newman Jr., J.C.; James, M.: Development and application of a crack tip opening displacement-based mixed mode fracture criterion. Int. J. Solids Struct. (2000). https://doi.org/10.1016/s0020-7683(99)00055-4

    MATH  Google Scholar 

  22. Hussain, M.; Pu, S.; Underwood, J.: Strain energy release rate for a crack under combined Mode I and Mode II. Fract. Anal. (1974). https://doi.org/10.1520/stp33130s

    Google Scholar 

  23. Khan, S.M.A.; Khraisheh, M.K.: Analysis of mixed mode crack initiation angles under various loading conditions. Eng. Fract. Mech. 67, 397–419 (2000). https://doi.org/10.1016/s0013-7944(00)00068-0

    Article  Google Scholar 

  24. Theocaris, P.S.; Andrianopoulos, N.P.: The T-criterion applied to ductile fracture. Int. J. Fract. (1982). https://doi.org/10.1007/bf01130617

    MATH  Google Scholar 

  25. Ma, F.S., Deng, X.M., Sutton, M.A.A., Newman Jr., J.C., Newman, J.C.: A CTOD-based mixed-mode fracture criterion. In: Mixed-mode crack behavior, pp. 86–110 (1999)

  26. Sajjadi, S.H.; Ostad Ahmad Ghorabi, M.J.; Salimi-Majd, D.: A novel mixed-mode brittle fracture criterion for crack growth path prediction under static and fatigue loading. Fatigue Fract. Eng. Mater. Struct. 38, 1372–1382 (2015). https://doi.org/10.1111/ffe.12320

    Article  Google Scholar 

  27. Maiti, S.K.; Smith, R.A.: Criteria for brittle fracture in biaxial tension. Eng. Fract. Mech. 19, 793–804 (1984). https://doi.org/10.1016/0013-7944(84)90162-0

    Article  Google Scholar 

  28. Wu, X.; Li, X.: Analysis and modification of fracture criteria for mixed-mode crack. Eng. Fract. Mech. 34, 55–64 (1989). https://doi.org/10.1016/0013-7944(89)90242-7

    Article  Google Scholar 

  29. Ayatollahi, M.R.; Berto, F.; Campagnolo, A.; Gallo, P.; Tang, K.: Review of local strain energy density theory for the fracture assessment of V-notches under mixed mode loading. Eng. Solid Mech. 5, 113–132 (2017). https://doi.org/10.5267/j.esm.2017.3.001

    Article  Google Scholar 

  30. Berto, F.; Gomez, J.: Notched plates in mixed mode loading (I + II): a review based on the local strain energy density and the cohesive zone model. Eng. Solid Mech. 5, 1–8 (2017). https://doi.org/10.5267/j.esm.2016.11.002

    Article  Google Scholar 

  31. Aliha, M.R.M.; Ayatollahi, M.R.: Mixed mode I/II brittle fracture evaluation of marble using SCB specimen. Procedia Eng. 10, 311–318 (2011). https://doi.org/10.1016/j.proeng.2011.04.054

    Article  Google Scholar 

  32. Ayatollahi, M.R.; Aliha, M.R.M.: On determination of mode II fracture toughness using semi-circular bend specimen. Int. J. Solids Struct. 43, 5217–5227 (2006). https://doi.org/10.1016/j.ijsolstr.2005.07.049

    Article  MATH  Google Scholar 

  33. Ayatollahi, M.R.; Aliha, M.R.M.; Hassani, M.M.: Mixed mode brittle fracture in PMMA: an experimental study using SCB specimens. Mater. Sci. Eng. A 417, 348–356 (2006). https://doi.org/10.1016/j.msea.2005.11.002

    Article  Google Scholar 

  34. Ayatollahi, M.R.; Aliha, M.R.M.M.: Mixed mode fracture in soda lime glass analyzed by using the generalized MTS criterion. Int. J. Solids Struct. 46, 311–321 (2009). https://doi.org/10.1016/j.ijsolstr.2008.08.035

    Article  MATH  Google Scholar 

  35. Aliha, M.R.M.M.; Ayatollahi, M.R.: Analysis of fracture initiation angle in some cracked ceramics using the generalized maximum tangential stress criterion. Int. J. Solids Struct. 49, 1877–1883 (2012). https://doi.org/10.1016/j.ijsolstr.2012.03.029

    Article  Google Scholar 

  36. Ayatollahi, M.R.; Saboori, B.: T-stress effects in mixed mode I/II/III brittle fracture. Eng. Fract. Mech. 144, 32–45 (2015). https://doi.org/10.1016/j.engfracmech.2015.06.070

    Article  Google Scholar 

  37. Smith, D.J.; Ayatollahi, M.R.; Pavier, M.J.: The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading. Fatigue Fract. Eng. Mater. Struct. 24, 137–150 (2001). https://doi.org/10.1046/j.1460-2695.2001.00377.x

    Article  Google Scholar 

  38. Mirsayar, M.M.: A new mixed mode fracture test specimen covering positive and negative values of T-stress. Eng. Solid Mech. 2, 67–72 (2014). https://doi.org/10.5267/j.esm.2014.2.006

    Article  Google Scholar 

  39. Mirsayar, M.M.M.; Park, P.: Mixed mode brittle fracture analysis of high strength cement mortar using strain-based criteria. Theor. Appl. Fract. Mech. 86, 233–238 (2016). https://doi.org/10.1016/j.tafmec.2016.07.007

    Article  Google Scholar 

  40. Ayatollahi, M.R.R.; Aliha, M.R.M.R.M.: Fracture toughness study for a brittle rock subjected to mixed mode I/II loading. Int. J. Rock Mech. Min. Sci. 44, 617–624 (2007). https://doi.org/10.1016/j.ijrmms.2006.10.001

    Article  Google Scholar 

  41. Mirsayar, M.M.M.; Joneidi, V.A.A.; Petrescu, R.V.V.V.V.; Petrescu, F.I.T.I.T.; Berto, F.: Extended MTSN criterion for fracture analysis of soda lime glass. Eng. Fract. Mech. 178, 50–59 (2017). https://doi.org/10.1016/j.engfracmech.2017.04.018

    Article  Google Scholar 

  42. Ayatollahi, M.R.R.; Rashidi Moghaddam, M.; Berto, F.: A generalized strain energy density criterion for mixed mode fracture analysis in brittle and quasi-brittle materials. Theor. Appl. Fract. Mech. 79, 70–76 (2015). https://doi.org/10.1016/j.tafmec.2015.09.004

    Article  Google Scholar 

  43. Kaung Jain Chang: On the maximum strain criterion-a new approach to the angled crack problem. Eng. Fract. Mech. 14, 107–124 (1981). https://doi.org/10.1016/0013-7944(81)90021-7

    Article  Google Scholar 

  44. Ayatollahi, M.R.; Abbasi, H.: Prediction of fracture using a strain based mechanism of crack growth. Build. Res. J. 49, 167–180 (2001)

    Google Scholar 

  45. Aliha, M.R.M.; Bahmani, A.; Akhondi, S.: Mixed mode fracture toughness testing of PMMA with different three-point bend type specimens. Eur. J. Mech. A/Solids. 58, 148–162 (2016). https://doi.org/10.1016/j.euromechsol.2016.01.012

    Article  Google Scholar 

  46. Fayed, A.S.: Numerical evaluation of mode I/II SIF of quasi-brittle materials using cracked semi-circular bend specimen. Eng. Solid Mech. 6, 175–186 (2018). https://doi.org/10.5267/j.esm.2018.1.002

    Article  Google Scholar 

  47. Saghafi, H.; Zucchelli, A.; Minak, G.: Evaluating fracture behavior of brittle polymeric materials using an IASCB specimen. Polym. Test. 32, 133–140 (2013). https://doi.org/10.1016/j.polymertesting.2012.09.013

    Article  Google Scholar 

  48. Aliha, M.R.M.R.M.; Berto, F.; Bahmani, A.; Gallo, P.: Mixed mode I/II fracture investigation of Perspex based on the averaged strain energy density criterion. Phys. Mesomech. 20, 149–156 (2017). https://doi.org/10.1134/s1029959917020059

    Article  Google Scholar 

  49. ABAQUS: Analysis user’s guide—Version 6.14. Dassault Systèmes (2013). https://doi.org/10.1177/0886260505276833

  50. Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications. CRC Press, Boca Raton (2017)

    Book  MATH  Google Scholar 

  51. Erdogan, F.; Sih, G.C.: On the crack extension in plates under plane loading and transverse shear. J. Basic Eng. 85, 519 (1963). https://doi.org/10.1115/1.3656897

    Article  Google Scholar 

  52. Ayatollahi, M.R.; Aliha, M.R.M.: On the use of Brazilian disc specimen for calculating mixed mode I-II fracture toughness of rock materials. Eng. Fract. Mech. 75, 4631–4641 (2008). https://doi.org/10.1016/j.engfracmech.2008.06.018

    Article  Google Scholar 

  53. Taylor, D.; Merlo, M.; Pegley, R.; Cavatorta, M.P.: The effect of stress concentrations on the fracture strength of polymethylmethacrylate. Mater. Sci. Eng. A 382, 288–294 (2004). https://doi.org/10.1016/j.msea.2004.05.012

    Article  Google Scholar 

  54. Golos, K.; Wasiluk, B.: Role of plastic zone in crack growth direction criterion under mixed mode loading. Int. J. Fract. 102, 341–353 (2000). https://doi.org/10.1023/A:1007663728926

    Article  Google Scholar 

  55. Aliha, M.R.M.; Ayatollah, M.R.; Smith, D.J.; Pavier, M.J.: Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Eng. Fract. Mech. 77, 2200–2212 (2010). https://doi.org/10.1016/j.engfracmech.2010.03.009

    Article  Google Scholar 

  56. Wei, M.D.; Dai, F.; Xu, N.W.; Liu, Y.; Zhao, T.: Fracture prediction of rocks under mode I and mode II loading using the generalized maximum tangential strain criterion. Eng. Fract. Mech. 186, 21–38 (2017). https://doi.org/10.1016/j.engfracmech.2017.09.026

    Article  Google Scholar 

  57. Bahmani, A.; Aliha, M.R.M.: Rock fracture toughness study under mixed mode I/III loading. Rock Mech. Rock Eng. (2017). https://doi.org/10.1007/s00603-017-1201-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Fayed.

Appendix

Appendix

See Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayed, A.S. Numerical Analysis of Crack Initiation Direction in Quasi-brittle Materials: Effect of T-Stress. Arab J Sci Eng 44, 7667–7676 (2019). https://doi.org/10.1007/s13369-019-03860-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-019-03860-4

Keywords

Navigation