Skip to main content
Log in

Continuum damage modeling of dynamic crack velocity, branching, and energy dissipation in brittle materials

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This study is aimed at evaluating continuum scale predictions of dynamic crack propagation and branching in brittle materials using local damage modeling. Classical experimental results on crack branching in PMMA and the corresponding nonlocal modeling results by Wolff et al. (Int J Numer Meth Eng 101(12):933, 2015) are used as a benchmark. An isotropic damage model based on a frame-invariant effective strain is adapted. Mesh objectivity is achieved by calibrating the damage model for a suitable element size and subsequently retaining that mesh size in all subsequent analyses. Crack propagation and branching are predicted by simulating accurately the test conditions. It is found that a local, rate-independent damage model considerably overpredicts the dynamic crack velocity and the extent of crack branching. Subsequently, the effect of various strain rate-dependent phenomena, viz. material viscoelasticity, rate-dependent strength, fracture energy, and failure strain is evaluated. Incorporating the material strain rate effects is found to improve the predictions and match the test data. In this regard, radially scaling the damage law is found to work the best. Despite an overprediction of micro-branching, the macro-crack branching is found to occur in agreement with the Yoffe instability criterion. Overall, various experimentally observed aspects of dynamic cracks are reproduced, including acceleration of cracks to a steady state velocity, increased micro-branching and macro-branching with increased strain rates, and crack velocity dependence of energy dissipation and fracture surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abraham FF (2005) Unstable crack motion is predictable. J Mech Phys Solids 53(5):1071

    Article  Google Scholar 

  • Allix O, Deü JF (1997) Delayed-damage modelling for fracture prediction of laminated composites under dynamic loading. Eng Trans 45(1):29

    Google Scholar 

  • Barenblatt GI et al (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7(1):55

    Article  Google Scholar 

  • Bažant ZP, Caner FC (2014) Impact comminution of solids due to local kinetic energy of high shear strain rate: I. Continuum theory and turbulence analogy. J Mech Phys Solids 64:223

    Article  Google Scholar 

  • Bažant ZP, Gettu R (1992) Rate effects and load relaxation in static fracture of concrete. ACI Mater J 89(5):456

    Google Scholar 

  • Bazant ZP, Li YN (1997) Cohesive crack with rate-dependent opening and viscoelasticity: I. mathematical model and scaling. Int J Fract 86(3):247

    Article  Google Scholar 

  • Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Mat Construct 16(3):155

    Article  Google Scholar 

  • Bažant ZP, Pijaudier-Cabot G (1989) Rate-dependent scaling of dynamic tensile strength of quasibrittle structures. J Eng Mech 115(4):755

    Google Scholar 

  • Bazant ZP, Planas J (1997) Fracture and size effect in concrete and other quasibrittle materials, vol 16. CRC Press, Boca Raton

    Google Scholar 

  • Bazant ZP, Planas J (1997) Fracture and size effect in concrete and other quasibrittle materials, vol 16. CRC Press, Boca Raton

    Google Scholar 

  • Bleyer J, Molinari JF (2017) Microbranching instability in phase-field modelling of dynamic brittle fracture. Appl Phys Lett 110(15):151903

    Article  Google Scholar 

  • Bleyer J, Roux-Langlois C, Molinari JF (2017) Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms. Int J Fract 204(1):79

    Article  Google Scholar 

  • Bolander JE, Sukumar N (2005) Irregular lattice model for quasistatic crack propagation. Phys Rev B 71(9):094106

    Article  Google Scholar 

  • Broberg K (1996) How fast can a crack go? Mater Sci 32(1):80

    Article  Google Scholar 

  • Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33(20–22):2899

    Article  Google Scholar 

  • Červenka J, Bažant ZP, Wierer M (2005) Mechanism-based energy regularization in computational modeling of quasibrittle fracture. Int J Numer Meth Eng 62(5):700

    Article  Google Scholar 

  • Doan DH, Bui TQ, Van Do T, Duc ND (2017) A rate-dependent hybrid phase field model for dynamic crack propagation. J Appl Phys 122(11):115102

    Article  Google Scholar 

  • Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100

    Article  Google Scholar 

  • Ebeida MS, Mitchell SA (2011) Proceedings of the 20th international meshing roundtable. Springer, Berlin, pp 273–290

  • F Zhou (1996) Study on the macroscopic behavior and the microscopic process of dynamic crack propagation. Ph.D. thesis, The University of Tokyo, Tokyo

  • Fenghua Z, Lili W, Shisheng H et al (1992) Explosion and Shock waves 4

  • Fineberg J (1997) APS, pp F4–02

  • Fineberg J, Marder M (1999) Instability in dynamic fracture. Phys Rep 313(1–2):1

    Article  CAS  Google Scholar 

  • Freund LB (1998) Dynamic fracture mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Gorgogianni A, Eliáš J, Le JL (2020) Measurement of characteristic length of nonlocal continuum. J Appl Mech 87:9

    Google Scholar 

  • Graebling D, Muller R, Palierne J (1993) Linear viscoelastic behavior of some incompatible polymer blends in the melt. Interpretation of data with a model of emulsion of viscoelastic liquids. Macromolecules 26(2):320

    Article  CAS  Google Scholar 

  • Hernández-Jiménez A, Hernández-Santiago J, Macias-Garcıa A, Sánchez-González J (2002) Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model. Polym Testing 21(3):325

    Article  Google Scholar 

  • Jia JH, Shen XY, Hua HX (2007) Viscoelastic behavior analysis and application of the fractional derivative Maxwell model. J Vib Control 13(4):385

    Article  Google Scholar 

  • JiráSek M, Bauer M (2012) Numerical aspects of the crack band approach. Comput Struct 110:60

    Article  Google Scholar 

  • Jirásek M, Grassl P (2008) Evaluation of directional mesh bias in concrete fracture simulations using continuum damage models. Eng Fract Mech 75(8):1921

    Article  Google Scholar 

  • Jirásek M, Rolshoven S (2003) Comparison of integral-type nonlocal plasticity models for strain-softening materials. Int J Eng Sci 41(13–14):1553

    Article  Google Scholar 

  • Jo C, Fu J, Naguib HE (2005) Constitutive modeling for mechanical behavior of PMMA microcellular foams. Polymer 46(25):11896

    Article  CAS  Google Scholar 

  • John R, Shah SP (1986) Fracture of concrete subjected to impact loading. Cem Concret Aggregat 8(1):24

    Article  Google Scholar 

  • Kachanov L (1986) Introduction to continuum damage mechanics, vol 10. Springer, New York

    Google Scholar 

  • Kirane K, Su Y, Bažant ZP (2015) Strain-rate-dependent microplane model for high-rate comminution of concrete under impact based on kinetic energy release theory. Proc R Soc A 471(2182):20150535

    Article  Google Scholar 

  • Knauss W (1970) Delayed failure” the Griffith problem for linearly viscoelastic materials. Int J FractMech 6(1):7

    Article  Google Scholar 

  • Ladeveze P (1992) A damage computational method for composite structures. Comput Struct 44(1–2):79

    Article  Google Scholar 

  • Leon S, Spring D, Paulino G (2014) Reduction in mesh bias for dynamic fracture using adaptive splitting of polygonal finite elements. Int J Numer Meth Eng 100(8):555

    Article  Google Scholar 

  • Li T, Marigo JJ, Guilbaud D, Potapov S (2016) Gradient damage modeling of brittle fracture in an explicit dynamics context. Int J Numer Meth Eng 108(11):1381

    Article  Google Scholar 

  • Luo W, Chau VT, Bažant ZP (2019) Effect of high-rate dynamic comminution on penetration of projectiles of various velocities and impact angles into concrete. Int J Fract 216(2):211

    Article  Google Scholar 

  • Mazars J (1986) A description of micro-and macroscale damage of concrete structures. Eng Fract Mech 25(5–6):729

    Article  Google Scholar 

  • Molinari JF, Gazonas G, Raghupathy R, Rusinek A, Zhou F (2007) The cohesive element approach to dynamic fragmentation: the question of energy convergence. Int J Numer Meth Eng 69(3):484

    Article  Google Scholar 

  • Needleman A (1988) Material rate dependence and mesh sensitivity in localization problems. Comput Methods Appl Mech Eng 67(1):69

    Article  Google Scholar 

  • Nguyen VP, Wu JY (2018) Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model. Comput Methods Appl Mech Eng 340:1000

    Article  Google Scholar 

  • Nguyen H, Pathirage M, Rezaei M, Issa M, Cusatis G, Bažant ZP (2020) New perspective of fracture mechanics inspired by gap test with crack-parallel compression. Proc Natl Acad Sci 117:14015–14020

    Article  CAS  Google Scholar 

  • Pandolfi A, Ortiz M (2002) An efficient adaptive procedure for three-dimensional fragmentation simulations. Eng Comput 18(2):148

    Article  Google Scholar 

  • Pandolfi A, Krysl P, Ortiz M (1999) Finite element simulation of ring expansion and fragmentation: the capturing of length and time scales through cohesive models of fracture. Int J Fract 95(1):279

    Article  CAS  Google Scholar 

  • Papoulia KD, Sam CH, Vavasis SA (2003) Time continuity in cohesive finite element modeling. Int J Numer Meth Eng 58(5):679

    Article  Google Scholar 

  • Pereira L, Weerheijm J, Sluys L (2015) In 9th International conference on fracture mechanics of concrete and concrete structures (FraMCos-9), p 14

  • Pontiroli C (1995) Comportement au souffle des structures en béton armé: analyse expérimentale et modélisation. Ph.D. thesis, Cachan, Ecole normale supérieure

  • Rabbi MF, Chalivendra VB (2019) Mathematical modeling of viscoelastic material under impact load. J Strain Anal Eng Design 54(2):130

    Article  Google Scholar 

  • Rabbi M, Chalivendra V, Li D (2019) A novel approach to increase dynamic fracture toughness of additively manufactured polymer. Exp Mech 59(6):899

    Article  CAS  Google Scholar 

  • Ravi-Chandar K, Knauss W (1984) An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching. Int J Fract 26(2):141

    Article  Google Scholar 

  • Repetto E, Radovitzky R, Ortiz M (2000) Finite element simulation of dynamic fracture and fragmentation of glass rods. Comput Methods Appl Mech Eng 183(1–2):3

    Article  Google Scholar 

  • Schapery R (1989) On the mechanics of crack closing and bonding in linear viscoelastic media. Int J Fract 39(1–3):163

    Article  Google Scholar 

  • Scheibert J, Guerra C, Bonamy D, Dalmas D (2012) Understanding fast macroscale fracture from microcrack post mortem patterns, EGUGA, p 10337

  • Sharon E, Gross SP, Fineberg J (1995) Local crack branching as a mechanism for instability in dynamic fracture. Phys Rev Lett 74(25):5096

    Article  CAS  Google Scholar 

  • Sharon E, Gross SP, Fineberg J (1996) Energy dissipation in dynamic fracture. Phys Rev Lett 76(12):2117

    Article  CAS  Google Scholar 

  • Simulia (2017) ABAQUS user’s manual, version 2017. Dassault Systemes Simulia Corp., Providence, RI

  • Sluys L, De Borst R, Mühlhaus HB (1993) Wave propagation, localization and dispersion in a gradient-dependent medium. Int J Solids Struct 30(9):1153

    Article  Google Scholar 

  • Wang J, Xu Y, Zhang W (2014) Finite element simulation of PMMA aircraft windshield against bird strike by using a rate and temperature dependent nonlinear viscoelastic constitutive model. Compos Struct 108:21

    Article  Google Scholar 

  • Williams J (1972) Visco-elastic and thermal effects on crack growth in PMMA. Int J FractMech 8(4):393

    Article  Google Scholar 

  • Willis J (1967) Crack propagation in viscoelastic media. J Mech Phys Solids 15(4):229

    Article  Google Scholar 

  • Wolff C, Richart N, Molinari JF (2015) A non-local continuum damage approach to model dynamic crack branching. Int J Numer Meth Eng 101(12):933

    Article  Google Scholar 

  • Wu JY (2017) A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J Mech Phys Solids 103:72

    Article  Google Scholar 

  • Wu JY, Nguyen VP (2018) A length scale insensitive phase-field damage model for brittle fracture. J Mech Phys Solids 119:20

    Article  Google Scholar 

  • Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397

    Article  Google Scholar 

  • Xu D, Liu Z, Liu X, Zeng Q, Zhuang Z (2014) Modeling of dynamic crack branching by enhanced extended finite element method. Comput Mech 54(2):489

    Article  Google Scholar 

  • Xue J, Kirane K (2019) Strength size effect and post-peak softening in textile composites analyzed by cohesive zone and crack band models. Eng Fract Mech 212:106

  • Yazid A, Abdelkader N, Abdelmadjid H (2009) A state-of-the-art review of the X-FEM for computational fracture mechanics. Appl Math Model 33(12):4269

    Article  Google Scholar 

  • Yoffe EH (1951) LXXV. The moving griffith crack. Lond Edinb Dublin Philosoph Mag J Sci 42(330):739

    Google Scholar 

  • Zhou F, Molinari JF, Shioya T (2005) A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials. Eng Fract Mech 72(9):1383

    Article  Google Scholar 

  • Zi G, Chen H, Xu J, Belytschko T (2005) The extended finite element method for dynamic fractures. Shock Vibrat 12(1):9

    Article  Google Scholar 

Download references

Acknowledgements

Research was sponsored by the Army Research Office and was accomplished under Grant number W911NF-19-1-0312. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office or the US Government. The US Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kedar Kirane.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, T., Kirane, K. Continuum damage modeling of dynamic crack velocity, branching, and energy dissipation in brittle materials. Int J Fract 229, 15–37 (2021). https://doi.org/10.1007/s10704-021-00537-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-021-00537-8

Keywords

Navigation