Skip to main content
Log in

Working Volume in High-Energy Ball-Milling Process on Breakage Characteristics and Adsorption Performance of Rice Straw Ash

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the effect of working volume in the high-energy ball-milling process on the breakage characteristics (i.e., particle size, morphology, and chemical composition) and adsorption performance of rice straw ash. This study was conducted to confirm working volume issue since this parameter has correlations with the scaling-up process, the amount of input/output in the ball-milling process, and the breakage characteristics of the material. Rice straw ash was selected as a model of size-destructed material because this material is porous and chemically and thermally inert; thus, the evaluation can be effectively done without any chemical reaction and time-consuming process. To obtain the outcome precisely, the study varied working volume under constant other processing parameters (i.e., ball-to-rice straw ash, milling speed/rotation, temperature, ball size) in the batch-typed conventional ball-milling process. The results showed that the ball-milling process is effective to reduce particle sizes to several micrometers and further nanometers. Precise control of the final particle size was achieved by the adjustment of working volume, in which the less working volume results in the generation of smaller particles. The prospect control of final particle size is due to the control of shear stress and collision phenomena during the ball-milling process. The evaluation was also completed with theoretical approximation and adsorption performance of the product. In addition to varying working volume, this study examined the product yield since it can be a contributive factor to determine the optimum condition of the ball-milling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lyu, H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Huang, H.; Tang, J.: Effects of ball milling on the physicochemical and sorptive properties of biochar: experimental observations and governing mechanisms. Environ. Pollut. 233, 54–63 (2018)

    Article  Google Scholar 

  2. Kuziora, P.; Wyszyńska, M.; Polanski, M.; Bystrzycki, J.: Why the ball to powder ratio (BPR) is insufficient for describing the mechanical ball milling process. Int. J. Hydrogen Energy 39(18), 9883–9887 (2014)

    Article  Google Scholar 

  3. Enayati, M.; Aryanpour, G.; Ebnonnasir, A.: Production of nanostructured WC–Co powder by ball milling. Int. J. Refract. Met. Hard Mater. 27(1), 159–163 (2009)

    Article  Google Scholar 

  4. Islam, S.; Al-Eshaikh, M.; Huda, Z.: Synthesis and characterization of high-energy ball-milled tungsten heavy alloy powders. Arab. J. Sci. Eng. 38(9), 2503–2507 (2013)

    Article  Google Scholar 

  5. Aydın, D.Y.; Gürü, M.; Ipek, D.; Özyürek, D.: Synthesis and characterization of zinc fluoroborate from zinc fluoride and boron by mechanochemical reaction. Arab. J. Sci. Eng. 42(10), 4409–4416 (2017)

    Article  Google Scholar 

  6. Dalmis, R.; Cuvalci, H.; Canakci, A.; Guler, O.; Celik, E.: The effect of mechanical milling on graphite-boron carbide hybrid reinforced ZA27 nanocomposites. Arab. J. Sci. Eng. 43, 1113–1124 (2017)

    Article  Google Scholar 

  7. Kutuk, S.; Kutuk-Sert, T.: Effect of PCA on nanosized ulexite material prepared by mechanical milling. Arab. J. Sci. Eng. 42(11), 4801–4809 (2017)

    Article  Google Scholar 

  8. Chen, Y.; Gerald, J.F.; Williams, J.; Bulcock, S.: Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling. Chem. Phys. Lett. 299(3–4), 260–264 (1999)

    Article  Google Scholar 

  9. Bid, S.; Pradhan, S.: Preparation of zinc ferrite by high-energy ball-milling and microstructure characterization by Rietveld’s analysis. Mater. Chem. Phys. 82(1), 27–37 (2003)

    Article  Google Scholar 

  10. Glushenkov, A.; Zhang, H.-Z.; Zou, J.; Lu, G.; Chen, Y.: Efficient production of ZnO nanowires by a ball milling and annealing method. Nanotechnology 18(17), 175604 (2007)

    Article  Google Scholar 

  11. Salah, N.; Habib, S.S.; Khan, Z.H.; Memic, A.; Azam, A.; Alarfaj, E.; Zahed, N.; Al-Hamedi, S.: High-energy ball milling technique for ZnO nanoparticles as antibacterial material. Int. J. Nanomed. 6, 863 (2011)

    Article  Google Scholar 

  12. Amirkhanlou, S.; Ketabchi, M.; Parvin, N.: Nanocrystalline/nanoparticle ZnO synthesized by high energy ball milling process. Mater. Lett. 86, 122–124 (2012)

    Article  Google Scholar 

  13. Ying, D.; Zhang, D.: Processing of Cu–Al\(_{2}\)O\(_{3}\) metal matrix nanocomposite materials by using high energy ball milling. Mater. Sci. Eng. A 286(1), 152–156 (2000)

    Article  Google Scholar 

  14. Sievert, T.; Wolter, A.; Singh, N.: Hydration of anhydrite of gypsum (CaSO4. II) in a ball mill. Cem. Concr. Res. 35(4), 623–630 (2005)

    Article  Google Scholar 

  15. Gheisari, K.; Javadpour, S.; Oh, J.; Ghaffari, M.: The effect of milling speed on the structural properties of mechanically alloyed Fe-45% Ni powders. J. Alloys Compd. 472(1–2), 416–420 (2009)

    Article  Google Scholar 

  16. Peng, Y.-X.; Ni, X.; Zhu, Z.-C.; Yu, Z.-F.; Yin, Z.-X.; Li, T.-Q.; Liu, S.-Y.; Xu, J.: Friction and wear of liner and grinding ball in iron ore ball mill. Tribol. Int. 115, 506–517 (2017)

    Article  Google Scholar 

  17. Nath, A.; Jiten, C.; Singh, K.C.: Influence of ball milling parameters on the particle size of barium titanate nanocrystalline powders. Phys. B Condens. Matter 405(1), 430–434 (2010)

    Article  Google Scholar 

  18. Kurniawan, T.; Muraza, O.; Hakeem, A.S.; Al-Amer, A.M.: Mechanochemical route and recrystallization strategy to fabricate mordenite nanoparticles from natural zeolites. Cryst. Growth Des. 17(6), 3313–3320 (2017)

    Article  Google Scholar 

  19. Kurniawan, T.; Muraza, O.; Bakare, I.A.; Sanhoob, M.A.; Al-Amer, A.M.: Isomerization of n-butane over cost-effective mordenite catalysts fabricated via recrystallization of natural zeolites. Ind. Eng. Chem. Res. 57(6), 1894–1902 (2018)

    Article  Google Scholar 

  20. Javadinejad, H.R.; Rizi, M.S.; Mobarakeh, E.A.; Ebrahimian, M.: Thermal stability of nano-hydroxyapatite synthesized via mechanochemical treatment. Arab. J. Sci. Eng. 42(10), 4401–4408 (2017)

    Article  Google Scholar 

  21. Deniz, V.; Onur, T.: Investigation of the breakage kinetics of pumice samples as dependent on powder filling in a ball mill. Int. J. Miner. Process. 67(1–4), 71–78 (2002)

    Article  Google Scholar 

  22. Gupta, V.; Sharma, S.: Analysis of ball mill grinding operation using mill power specific kinetic parameters. Adv. Powder Technol. 25(2), 625–634 (2014)

    Article  Google Scholar 

  23. Sheng-Yong, L.; Qiong-Jing, M.; Zheng, P.; Xiao-Dong, L.; Jian-Hua, Y.: Simulation of ball motion and energy transfer in a planetary ball mill. Chin. Phys. B 21(7), 078201 (2012)

    Article  Google Scholar 

  24. Venkataraman, K.; Narayanan, K.: Energetics of collision between grinding media in ball mills and mechanochemical effects. Powder Technol. 96(3), 190–201 (1998)

    Article  Google Scholar 

  25. Schnatz, R.: Optimization of continuous ball mills used for finish-grinding of cement by varying the L/D ratio, ball charge filling ratio, ball size and residence time. Int. J. Miner. Process. 74, S55–S63 (2004)

    Article  Google Scholar 

  26. Austin, L.: Understanding ball mill sizing. Ind. Eng. Chem. Process Des. Dev. 12(2), 121–129 (1973)

    Article  Google Scholar 

  27. Zhang, D.: Processing of advanced materials using high-energy mechanical milling. Prog. Mater. Sci. 49(3–4), 537–560 (2004)

    Article  Google Scholar 

  28. Rosenkranz, S.; Breitung-Faes, S.; Kwade, A.: Experimental investigations and modelling of the ball motion in planetary ball mills. Powder Technol. 212(1), 224–230 (2011)

    Article  Google Scholar 

  29. Nandiyanto, A.B.D.; Putra, Z.; Andika, R.; Bilad, M.R.; Kurniawan, T.; Zulhijah, R.; Hamidah, I.: Porous activated carbon particles from rice straw waste and their adsorption properties. J. Eng. Sci. Technol. 12, 1–11 (2017)

    Google Scholar 

  30. Permatasari, N.; Sucahya, T.N.; Nandiyanto, A.B.D.: Agricultural wastes as a source of silica material. Indones. J. Sci. Technol. 1(1), 82–106 (2016)

    Article  Google Scholar 

  31. Weeber, A.; Bakker, H.: Amorphization by ball milling. A review. Phys. B Condens. Matter 153(1–3), 93–135 (1988)

    Article  Google Scholar 

  32. Stolle, A.; Szuppa, T.; Leonhardt, S.E.; Ondruschka, B.: Ball milling in organic synthesis: solutions and challenges. Chem. Soc. Rev. 40(5), 2317–2329 (2011)

    Article  Google Scholar 

  33. Fathy, M.; Moghny, T.A.; Mousa, M.A.; El-Bellihi, A.-H.A.; Awadallah, A.E.: Synthesis of transparent amorphous carbon thin films from cellulose powder in rice straw. Arab. J. Sci. Eng. 42(1), 225–233 (2017)

    Article  Google Scholar 

  34. Nandiyanto, A.B.D.; Wiryani, A.S.; Rusli, A.; Purnamasari, A.; Abdullah, A.G.; Riza, L.S.: Decomposition behavior of curcumin during solar irradiation when contact with inorganic particles. IOP Conf. Ser. Mater. Sci. Eng. 180, 012135 (2017)

    Article  Google Scholar 

  35. Nandiyanto, A.B.D.; Wiryani, A.S.; Rusli, A.; Purnamasari, A.; Abdullah, A.G.; Widiaty, I.; Hurriyati, R.: Extraction of curcumin pigment from Indonesian local turmeric with its infrared spectra and thermal decomposition properties. IOP Conf. Ser. Mater. Sci. Eng. 180, 012136 (2017)

    Article  Google Scholar 

  36. Nandiyanto, A.B.D.; Zaen, R.; Oktiani, R.: Correlation between crystallite size and photocatalytic performance of micrometer-sized monoclinic WO3 particles. Arab. J. Chem. (2017) (in press)

  37. Nandiyanto, A.B.D.; Sofiani, D.; Permatasari, N.; Sucahya, T.N.; Wiryani, A.S.; Purnamasari, A.; Rusli, A.; Prima, E.C.: Photodecomposition profile of organic material during the partial solar eclipse of 9 March 2016 and its correlation with organic material concentration and photocatalyst amount. Indones. J. Sci. Technol. 1(2), 132–155 (2016)

    Article  Google Scholar 

  38. Nandiyanto, A.B.D.; Permatasari, N.; Sucahya, T.N.; Abdullah, A.G.; Hasanah, L.: Synthesis of potassium silicate nanoparticles from rice straw ash using a flame-assisted spray-pyrolysis method. IOP Conf. Ser. Mater. Sci. Eng. 180, 012133 (2017)

    Article  Google Scholar 

  39. Nandiyanto, A.B.D.; Permatasari, N.; Sucahya, T.N.; Purwanti, S.T.; Munawaroh, H.S.H.; Abdullah, A.G.; Hasanah, L.: Preparation of potassium-posphate-embedded amorphous silicate material from rice straw waste. IOP Conf. Ser. Mater. Sci. Eng. 180, 012138 (2017)

    Article  Google Scholar 

  40. Nandiyanto, A.B.D.; Rahman, T.; Fadhlulloh, M.A.; Abdullah, A.G.; Hamidah, I.; Mulyanti, B.: Synthesis of silica particles from rice straw waste using a simple extraction method. IOP Conf. Ser. Mater. Sci. Eng. 128, 012040 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asep Bayu Dani Nandiyanto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandiyanto, A.B.D., Zaen, R. & Oktiani, R. Working Volume in High-Energy Ball-Milling Process on Breakage Characteristics and Adsorption Performance of Rice Straw Ash. Arab J Sci Eng 43, 6057–6066 (2018). https://doi.org/10.1007/s13369-018-3265-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-018-3265-4

Keywords

Navigation