Skip to main content

Advertisement

Log in

Thermal Stability of Nano-Hydroxyapatite Synthesized via Mechanochemical Treatment

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nano-hydroxyapatite powder was synthesized using phosphorus pentoxide and calcium hydroxide as raw materials, through solid-state reaction via mechanochemical method. The properties of the synthesized nano-hydroxyapatite was characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetry and Williamson–Hall method. Also, the effects of heating rate and temperature on the crystallinity phase, morphology, particle size, composition and thermal stability of hydroxyapatite were investigated. The results show that synthesized nano-hydroxyapatite using solid-state method has good thermal stability and performance for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yuan, H.; Kurashina, K.; de Bruijn, J.D.; Li, Y.; de Groot, K.; Zhang, X.: A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20(19), 1799–1806 (1999). doi:10.1016/s0142-9612(99)00075-7

    Article  Google Scholar 

  2. Zhang, X.; Cresswellp, M: Inorganic Controlled Release Technology Materials and Concepts for Advanced Drug Formulation, Chap. 16, pp. 161–187 (2016)

  3. Aoki, H.: Science and Medical Applications of Hydroxyapatite. Japanese Association of Apatite Science, Tokyo (1991)

    Google Scholar 

  4. Bianco, A.; Cacciotti, I.; Lombardi, M.; Montanaro, L.; Bemporad, E.; Sebastiani, M.: F-substituted hydroxyapatite nanopowders: thermal stability, sintering behaviour and mechanical properties. Ceram. Int. 36(1), 313–322 (2010). doi:10.1016/j.ceramint.2009.09.007

    Article  Google Scholar 

  5. Mobasherpour, I.; Heshajin, M.S.; Kazemzadeh, A.; Zakeri, M.: Synthesis of nanocrystalline hydroxyapatite by using precipitation method. J. Alloys Compd. 430(1–2), 330–333 (2007). doi:10.1016/j.jallcom.2006.05.018

    Article  Google Scholar 

  6. Zhang, X.; Vecchio, K.S.: Hydrothermal synthesis of hydroxyapatite rods. J. Cryst. Growth 308(1), 133–140 (2007). doi:10.1016/j.jcrysgro.2007.07.059

    Article  Google Scholar 

  7. Rajabi-Zamani, A.H.; Behnamghader, A.; Kazemzadeh, A.: Synthesis of nanocrystalline carbonated hydroxyapatite powder via nonalkoxide sol-gel method. Mater. Sci. Eng. C 28(8), 1326–1329 (2008). doi:10.1016/j.msec.2008.02.001

    Article  Google Scholar 

  8. Jarudilokkul, S.; Tanthapanichakoon, W.; Boonamnuayvittaya, V.: Synthesis of hydroxyapatite nanoparticles using an emulsion liquid membrane system. Coll. Surf. Physicochem. Eng. Asp. 296(1–3), 149–153 (2007). doi:10.1016/j.colsurfa.2006.09.038

    Article  Google Scholar 

  9. Sun, R.; Lu, Y.; Chen, K.: Preparation and characterization of hollow hydroxyapatite microspheres by spray drying method. Mater. Sci. Eng. C 29(4), 1088–1092 (2009). doi:10.1016/j.msec.2008.08.010

    Article  Google Scholar 

  10. Dos Santos, E.A.; Moldovan, M.S.; Jacomine, L.; Mateescu, M.; Werckmann, J.; Anselme, K.; Pelletier, H.: Oriented hydroxyapatite single crystals produced by the electrodeposition method. Mater. Sci. Eng. B 169(1–3), 138–144 (2010). doi:10.1016/j.mseb.2009.10.007

    Article  Google Scholar 

  11. Yang, C.; Yang, P.; Wang, W.; Wang, J.; Zhang, M.; Lin, J.: Solvothermal synthesis and characterization of Ln (Eu3+, Tb3+) doped hydroxyapatite. J. Coll. Interface Sci. 328(1), 203–210 (2008). doi:10.1016/j.jcis.2008.09.010

    Article  Google Scholar 

  12. Han, Y.; Li, S.; Wang, X.; Bauer, I.; Yin, M.: Sonochemical preparation of hydroxyapatite nanoparticles stabilized by glycosaminoglycans. Ultrason. Sonochem. 14(3), 286–290 (2007). doi:10.1016/j.ultsonch.2006.06.002

    Article  Google Scholar 

  13. Honarmandi, P.; Honarmandi, P.; Shokuhfar, A.; Nasiri-Tabrizi, B.; Ebrahimi-Kahrizsangi, R.: Milling media effects on synthesis, morphology and structural characteristics of single crystal hydroxyapatite nanoparticles. Adv. Appl. Ceram. 109(2), 117–122 (2010). doi:10.1179/174367509x12447975734230

    Article  Google Scholar 

  14. Yoganand, C.P.; Selvarajan, V.; Goudouri, O.M.; Paraskevopoulos, K.M.; Wu, J.; Xue, D.: Preparation of bovine hydroxyapatite by transferred arc plasma. Curr. Appl. Phys. 11(3), 702–709 (2011). doi:10.1016/j.cap.2010.11.035

    Article  Google Scholar 

  15. Xu, J.L.; Khor, K.A.: Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method. J. Inorg. Biochem. 101(2), 187–195 (2007). doi:10.1016/j.jinorgbio.2006.09.030

    Article  Google Scholar 

  16. Sundrarajan, M.; Jegatheeswaran, S.; Selvam, S.; Sanjeevi, N.; Balaji, M.: The ionic liquid assisted green synthesis of hydroxyapatite nanoplates by Moringa oleifera flower extract: A biomimetic approach. Mater. Des. 88, 1183–1190 (2015). doi:10.1016/j.matdes.2015.09.051

    Article  Google Scholar 

  17. Oliveira, I.R.; Andrade, T.L.; Araujo, K.C.M.L.; Luz, A.P.; Pandolfelli, V.C.: Hydroxyapatite synthesis and the benefits of its blend with calcium aluminate cement. Ceram. Int. 42(2), 2542–2549 (2016). doi:10.1016/j.ceramint.2015.10.056

    Article  Google Scholar 

  18. Mortazavi-Derazkola, S.; Naimi-Jamal, M.; Ghoreishi, S.: Synthesis, characterization, and atenolol delivery application of functionalized mesoporous hydroxyapatite nanoparticles prepared by microwave-assisted co-precipitation method. CDD 13(999), 1–1 (2016). doi:10.2174/1567201813666160321115543

    Google Scholar 

  19. Nasiri-Tabrizi, B.; Honarmandi, P.; Ebrahimi-Kahrizsangi, R.; Honarmandi, P.: Synthesis of nanosize single-crystal hydroxyapatite via mechanochemical method. Mater. Lett. 63(5), 543–546 (2009). doi:10.1016/j.matlet.2008.11.030

    Article  Google Scholar 

  20. Rivera-Muñoz, E.M.: Hydroxyapatite-Based Materials: Synthesis and Characterization, Biomedical Engineering - Frontiers and challenges, Prof. Reza Fazel (Ed.), InTech, doi:10.5772/19123. Available from: http://www.intechopen.com/books/biomedical-engineering-frontiers-andchallenges/hydroxyapatite-based-materials-synthesis-and-characterization (2011)

  21. Abu-Bakar, A.S.; Moinuddin, K.A.M.: Effects of variation in heating rate, sample mass and nitrogen flow on chemical kinetics for pyrolysis. In: 18th Australasian Fluid Mechanics Conference Launceston, Australia (2012)

  22. Gimenez, P.; Fereres, S.: Effect of heating rates and composition on the thermal decomposition of nitrate based molten salts. Energy Proc. 69, 654–662 (2015). doi:10.1016/j.egypro.2015.03.075

    Article  Google Scholar 

  23. Huang, Y.; Fan, C.; Han, X.; Jiang, X.: A TGA-MS investigation of the effect of heating rate and mineral matrix on the pyrolysis of kerogen in oil shale. Oil Shale 33(2), 125 (2016)

    Article  Google Scholar 

  24. Vyazovkin, S.: Handbook of Thermal Analysis, Chap. 13, Vol. 5, New York, pp. 503–538 (2008)

  25. Salimi, M.N.; Bridson, R.H.; Grover, L.M.; Leeke, G.A.: Effect of processing conditions on the formation of hydroxyapatite nanoparticles. Powder Technol. 218, 109–118 (2012). doi:10.1016/j.powtec.2011.11.049

    Article  Google Scholar 

  26. Nasiri-Tabrizi, B.; Fahami, A.; Ebrahimi-Kahrizsangi, R.: A comparative study of hydroxyapatite nanostructures produced under different milling conditions and thermal trea ment of bovine bone. J. Ind. Eng. Chem. 63(5), 543–546 (2009). doi:10.1016/j.matlet.2008.11.030

    Google Scholar 

  27. Nasiri-Tabrizi, B.; Fahami, A.; Ebrahimi-Kahrizsangi, R.: Effect of milling parameters on the formation of nanocrystalline hydroxyapatite using different raw materials. Ceram. Int. 39(2013), 5751–5763 (2013)

    Article  Google Scholar 

  28. Williamson, G.; Hall, W.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953). doi:10.1016/0001-6160(53)90006-6

    Article  Google Scholar 

  29. Landi, E.; Tampieri, A.; Celotti, G.; Sprio, S.: Densification behaviour and mechanisms of synthetic hydroxyapatites. J. Euro. Ceram. Soc. 20(14–15), 2377–2387 (2000). doi:10.1016/s0955-2219(00)00154-0

    Article  Google Scholar 

  30. Shaltout, Abdallah A.; Allam, Moussa A.; Moharram, Mohamed A.: FTIR spectroscopic, thermal and XRD characterization of hydroxyapatite from new natural sources. Spectrochim. Acta Part A 83(2011), 56–60 (2011)

    Article  Google Scholar 

  31. Avvakumov, E.; Senna, M.; Kosova, N.: Soft Mechanochemical Synthesis: A Basis for Newchemical Technologies. Kluwer Academic Publishers, Boston (2001)

    Google Scholar 

  32. Parra, M.R.; Haque, F.Z.: Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles. J. Mater. Res. Technol. 3(4), 363–369 (2014). doi:10.1016/j.jmrt.2014.07.001

    Article  Google Scholar 

  33. Nakano, T.; Umakoshi, Y.; Tokumura, A.: Variation in crystallinity of hydroxyapatite and the related calcium phosphates by mechanical grinding and subsequent heat treatment. Metall. Mater. Trans. A 33(3), 521–528 (2002). doi:10.1007/s11661-002-0114-5

    Article  Google Scholar 

  34. Abdel-Aal, E.A.; El-Midany, A.A.; El-Shall, H.: Mechanochemical-hydrothermal preparation of nano-crystallite hydroxyapatite using statistical design. Mater. Chem. Phys. 112(1), 202–207 (2008). doi:10.1016/j.matchemphys.2008.05.053

    Article  Google Scholar 

  35. Silva, C.C.; Pinheiro, A.G.; Miranda, M.A.R.; Góes, J.C.; Sombra, A.S.B.: Structural properties of hydroxyapatite obtained by mechanosynthesis. Solid State Sci. 5(4), 553–558 (2003). doi:10.1016/s1293-2558(03)00035-9

    Article  Google Scholar 

  36. Mohammadi Zahrani, E.; Fathi, M.H.: The effect of high-energy ball milling parameters on the preparation and characterization of fluorapatite nanocrystalline powder. Ceram. Int. 35(6), 2311–2323 (2009). doi:10.1016/j.ceramint.2009.01.012

    Article  Google Scholar 

  37. Shu, C.; Yanwei, W.; Hong, L.; Zhengzheng, P.; Kangde, Y.: Synthesis of carbonated hydroxyapatite nanofibers by mechanochemical methods. Ceram. Int. 31(1), 135–138 (2005). doi:10.1016/j.ceramint.2004.04.012

    Article  Google Scholar 

  38. Yeong, K.C.B.; Wang, J.; Ng, S.C.: Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO4. Biomaterials 22(20), 2705–2712 (2001). doi:10.1016/s0142-9612(00)00257-x

    Article  Google Scholar 

  39. Rhee, S.-H.: Synthesis of hydroxyapatite via mechanochemical treatment. Biomaterials 23(4), 1147–1152 (2002). doi:10.1016/s0142-9612(01)00229-0

    Article  Google Scholar 

  40. Varma, H.K.; Suresh Babu, S.: Synthesis of calcium phosphate bioceramics by citrate gel pyrolysis method. Ceram. Int. 31(1), 109–114 (2005). doi:10.1016/j.ceramint.2004.03.041

    Article  Google Scholar 

  41. Kawata, M.; Uchida, H.; Itatani, K.; Okada, I.; Koda, S.; Aizawa, M.: Development of porous ceramics with well-controlled porosities and pore sizes from apatite fibers and their evaluations. J. Mater. Sci. Mater. Med. 15(7), 817–823 (2004). doi:10.1023/b:jmsm.0000032823.66093.aa

    Article  Google Scholar 

  42. Miyaji, F.; Kono, Y.; Suyama, Y.: Formation and structure of zinc-substituted calcium hydroxyapatite. Mater. Res. Bull. 40(2), 209–220 (2005). doi:10.1016/j.materresbull.2004.10.020

    Article  Google Scholar 

  43. Mir, M.; Leite, F.L.; Herrmann Junior, P.S.de P.; Pissetti, F.L.; Rossi, A.M.; Moreira, E.L.; Mascarenhas, Y.P.: XRD, AFM, IR and TGA study of nanostructured hydroxyapatite. Mater. Res. 15(4), 622–627 (2012). doi:10.1590/s1516-14392012005000069

  44. Koutsopoulos, S.: Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J. Biomed. Mater. Res. 62(4), 600–612 (2002). doi:10.1002/jbm.10280

    Article  Google Scholar 

  45. Zhang, C.; Yang, J.; Quan, Z.; Yang, P.; Li, C.; Hou, Z.; Lin, J.: Hydroxyapatite nano- and microcrystals with multiform morphologies: controllable synthesis and luminescence properties. Crystal Growth Des. 9(6), 2725–2733 (2009). doi:10.1021/cg801353n

    Article  Google Scholar 

  46. Liu, J.; Li, K.; Wang, H.; Zhu, M.; Yan, H.: Rapid formation of hydroxyapatite nanostructures by microwave irradiation. Chem. Phys. Lett. 396(4–6), 429–432 (2004). doi:10.1016/j.cplett.2004.08.094

    Article  Google Scholar 

  47. Rossi, A.M.; Prado da Silva, M.H.; Ramirez, A.J.; Biggemann, D.; Caraballo, M.M.; Mascarenhas, Y.P.; Moure, G.T.: Structural properties of hydroxyapatite with particle size less than 10 nanometers. Bioceramics 19, 255–258 (2007). doi:10.4028/0-87849-422-7.255

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hamid Reza Javadinejad or Mohsen Saboktakin Rizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javadinejad, H.R., Saboktakin Rizi, M., Aghababaei Mobarakeh, E. et al. Thermal Stability of Nano-Hydroxyapatite Synthesized via Mechanochemical Treatment. Arab J Sci Eng 42, 4401–4408 (2017). https://doi.org/10.1007/s13369-017-2498-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2498-y

Keywords

Navigation