Skip to main content
Log in

Effect of PCA on Nanosized Ulexite Material Prepared by Mechanical Milling

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Raw ulexite (U-3 mm) mineral used as a initial material was milled by using mechanical milling method, the milling time of which is from 0 to 8 h. Particle size, morphology, elemental and crystal structure measurements of the U-3 mm material and milled powder (U_3%, process control agent amount: 3%) were performed. In particle size analysis, minimum \(d_{50},d_{10}\) and \(d_{\mathrm{min}}\) values of U_3% powder have been found to be 5.921 \(\upmu \hbox {m}\), 641 nm and 240 nm, respectively. Therefore, it has been reached to submicron level in particle size for the U_3% powder. Besides, optimum milling time has been detected to be 0.5 h. In morphology analysis, the U_3% powder has been observed to be more homogeneous compared to the U-3 mm material. In the analysis of element, the U_3% powder has been determined not to be a pure compound (\(\hbox {Na}_{2}\hbox {O}{\cdot }2\hbox {CaO}{\cdot } 5\hbox {B}_{2}\hbox {O}_{3}{\cdot } 16\hbox {H}_{2}\hbox {O}\)). In crystal structure analysis, crystalline size of the U_3% powder has reduced to 10.3 nm at the end of 8 h. Moreover, crystal structure deformation caused by milling process of the U-3 mm material has improved thanks to PCA. The findings obtained from this work will be beneficial for nanoworks and industrial applications, e.g., civil engineering-pavement engineering materials, of ulexite (boron mineral) material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eti Mine: Areas of usage of boron. In: 2013 Annual Report, p. 35. Ankara, Turkey (2013)

  2. Ipek, H.; Sahan, H.: Effect of heat treatment on breakage rate function of ulexite. Physicochem. Probl. Miner. Process. 49, 651–658 (2013)

    Google Scholar 

  3. Demirkiran, N.; Bayrakçi, N.; Asin, C.: Dissolution of thermally dehydrated ulexite in ammonium acetate solutions. Trans. Nonferrous Met. Soc. China 23, 1797–1803 (2013)

    Article  Google Scholar 

  4. Sert, H.; Yildiran, H.; Toscal, D.: An investigation on the production of sodium metaborate dihydrate from ulexite by using trona and lime. Int. J. Hydrog. Energy 37, 5833–5839 (2012)

    Article  Google Scholar 

  5. Vignolo, M.; Bovone, G.; Matera, D.; Nardelli, D.; Bernini, C.; Siri, A.S.: Nano-sized boron synthesis process towards the large scale production. Chem. Eng. J. 256, 32–38 (2014)

    Article  Google Scholar 

  6. Demir, F.; Un, A.: Radiation transmission of colemanite, tincalconite and ulexite for 6 and 18 MV X-rays by using linear accelerator. Appl. Radiat. Isot. 72, 1–5 (2013)

    Article  Google Scholar 

  7. Guo, S.; Hu, C.; Kagawa, Y.: Mechanochemical processing of nanocrystalline zirconium diboride powder. J. Am. Ceram. Soc. 94, 3643–3647 (2011)

    Article  Google Scholar 

  8. Sevim, U.K.; Tümen, Y.: Strength and fresh properties of borogypsum concrete. Constr. Build. Mater. 48, 342–347 (2013)

    Article  Google Scholar 

  9. Kütük-Sert, T.; Kütük, S.: Physical and marshall properties of borogypsum used as filler aggregate in asphalt concrete. J. Mater. Civ. Eng. 25, 266–273 (2013)

    Article  Google Scholar 

  10. Emrullahoglu Abi, C.B.: Effect of borogypsum on brick properties. Constr. Build. Mater. 59, 195–203 (2014)

    Article  Google Scholar 

  11. Canakci, A.; Varol, T.; Cuvalci, H.; Erdemir, F.; Ozkaya, S.; Yalcin, E.D.: Synthesis of novel CuSn\(_{10}\)-graphite nanocomposite powders by mechanical alloying. Micro Nano Lett. 9, 109–112 (2014)

    Article  Google Scholar 

  12. Alizadeh, M.; Sharifianjazi, F.; Haghshenasjazi, E.; Aghakhani, M.; Rajabi, L.: Production of nanosized boron oxide powder by high-energy ball milling. Synth. React. Inorganic Met. Nano-Metal Chem. 45, 11–14 (2015)

    Article  Google Scholar 

  13. Zhang, F.L.; Zhu, M.; Wang, C.Y.: Parameters optimization in the planetary ball milling of nanostructured tungsten carbide/cobalt powder. Int. J. Refract. Met. Hard Mater. 26, 329–333 (2008)

    Article  Google Scholar 

  14. Abdellahi, M.; Bahmanpour, H.; Bahmanpour, M.: The best conditions for minimizing the synthesis time of nanocomposites during high energy ball milling: Modeling and optimizing. Ceram. Int. 40, 9675–9692 (2014)

    Article  Google Scholar 

  15. Li, Y.; Wang, Y.; Lv, Q.; Qin, Z.; Liu, X.: Synthesis of uniform plate-like boron nitride nanoparticles from boron oxide by ball milling and annealing process. Mater. Lett. 108, 96–102 (2013)

    Article  Google Scholar 

  16. Jung, J.; Kim, J.; Uhm, Y.R.; Jeon, J.K.; Lee, S.; Lee, H.M.; Rhee, C.K.: Preparations and thermal properties of micro- and nano-BN dispersed HDPE composites. Thermochim. Acta 499, 8–14 (2010)

    Article  Google Scholar 

  17. Xu, X.; Kim, J.H.; Yeoh, W.K.; Zhang, Y.; Dou, S.X.: Improved Jc of MgB\(_2\) superconductor by ball milling using different media. Supercond. Sci. Technol. 19, L47–L50 (2006)

    Article  Google Scholar 

  18. Zhang, P.; Jia, D.; Yang, Z.; Duan, X.; Zhou, Y.: Physical and surface characteristics of the mechanically alloyed SiBCN powder. Ceram. Int. 38, 6399–6404 (2012)

    Article  Google Scholar 

  19. Zhang, P.; Jia, D.; Yang, Z.; Duan, X.; Zhou, Y.: Influence of ball milling parameters on the structure of the mechanically alloyed SiBCN powder. Ceram. Int. 39, 1963–1969 (2013)

    Article  Google Scholar 

  20. Jung, H.J.; Sohn, Y.; Sung, H.G.; Hyun, H.S.; Shin, W.G.: Physicochemical properties of ball milled boron particles: dry vs. wet ball milling process. Powder Technol. 269, 548–553 (2015)

    Article  Google Scholar 

  21. Kutuk, S.: Influence of milling parameters on particle size of ulexite material. Powder Technol. 301, 421–428 (2016)

    Article  Google Scholar 

  22. Bolat, S.; Kutuk, S.: Fabrication of the new Y\(_3\)Ba\(_5\)Cu\(_8\)O\(_y\) superconductor using melt-powder-melt-growth method and comparison with YBa\(_{2}\)Cu\(_{3}\)O\(_{7-x}\). J. Supercond. Nov. Magn. 25, 731–738 (2012)

    Article  Google Scholar 

  23. Alam, S.N.: Synthesis and characterization of W–Cu nanocomposites developed by mechanical alloying. Mater. Sci. Eng. A 433, 161–168 (2006)

    Article  Google Scholar 

  24. Kursun, C.; Gogebakan, M.: Characterization of nanostructured Mg–Cu–Ni powders prepared by mechanical alloying. J. Alloys Compd. 619, 138–144 (2015)

    Article  Google Scholar 

  25. Sivasankaran, S.; Sivaprasad, K.; Narayanasamy, R.; Iyer, V.K.: An investigation on flowability and compressibility of AA 6061100 \(-\) x–x wt.% TiO\(_{2}\) micro and nanocomposite powder prepared by blending and mechanical alloying. Powder Technol. 201, 70–82 (2010)

    Article  Google Scholar 

  26. Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater Sci. 46, 1–184 (2001)

    Article  Google Scholar 

  27. Şener, S.; Özbayoglu, G.; Demirci, Ş.: Changes in the structure of ulexite on heating. Thermochim. Acta 362, 107–112 (2000)

    Article  Google Scholar 

  28. Uysal, T.; Mutlu, H.S.; Erdemoğlu, M.: Effects of mechanical activation of colemanite (Ca\(_2\)B\(_6\)O\(_{11}\) \(\cdot \)5H\(_2\)O) on its thermal transformations. Int. J. Miner. Process. 151, 51–58 (2016)

    Article  Google Scholar 

  29. Varol, T.; Canakci, A.; Yalcin, E.D.: Fabrication of nanoSiC-reinforced Al2024 matrix composites by a novel production method. Arab. J. Sci. Eng. 42, 1751–1764 (2017)

    Article  Google Scholar 

  30. Kutuk-Sert, T.: Stability analyses of submicron-boron mineral prepared by mechanical milling process in concrete roads. Constr. Build. Mater. 121, 255–264 (2016)

    Article  Google Scholar 

  31. Mishra, S.K.; Das, S.; Pathak, L.C.: Defect structures in zirconium diboride powder prepared by self-propagating high-temperature synthesis. Mater. Sci. Eng. A 364, 249–255 (2004)

    Article  Google Scholar 

  32. Kutuk, S.; Bolat, S.; Terzioglu, C.; Altintas, S.P.: An investigation of magnetoresistivity properties of an Y\(_3\)Ba\(_5\)Cu\(_8\)O\(_y\) bulk superconductor. J. Alloys Compd. 650, 159–164 (2015)

    Article  Google Scholar 

  33. Eskibalci, M.F.; Ozkan, S.G.: An investigation of effect of microwave energy on electrostatic separation of colemanite and ulexite. Miner. Eng. 31, 90–97 (2012)

    Article  Google Scholar 

  34. Bayca, S.U.; Kocan, F.; Abali, Y.: Investigation of leaching kinetics of ulexite waste in oxalic acid solutions. Chem. Biochem. Eng. Q. 28, 273–280 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sezai Kutuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutuk, S., Kutuk-Sert, T. Effect of PCA on Nanosized Ulexite Material Prepared by Mechanical Milling. Arab J Sci Eng 42, 4801–4809 (2017). https://doi.org/10.1007/s13369-017-2643-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2643-7

Keywords

Navigation