Skip to main content
Log in

A Comparative Study on the Adsorption of Eriochrome Black T Dye from Aqueous Solution on Graphene and Acid-Modified Graphene

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, the adsorption behavior of Eriochrome Black T (EBT) on graphene (G) and acid-modified graphene (AMG) was investigated. Surface of the graphene was modified by acid treatment. Surface and structural characterization of the adsorbents were conducted using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) surface area analysis. The effect of influential adsorption parameters (pH, contact time, and initial concentration) on the adsorption of EBT onto G and AMG were examined in batch experiments. Adsorption behavior of EBT on the surfaces of G and AMG was evaluated by applying different isotherm models (Langmuir, Freundlich, and Redlich–Peterson) on equilibrium data. The adsorption kinetics was studied by using pseudo-first-order and pseudo-second-order model. Adsorption followed the pseudo-second-order rate kinetics. The maximum removal of EBT was found to be 95 and 80% by G and AMG, respectively, at pH 2, adsorbent dosage of 10 mg, contact time of 3 h, and initial dye concentration of 10 mg/L. The maximum adsorption capacities were 102.04 and 70.42 mg/g for G and AMG, respectively. It was found that acid modification of graphene has an adverse effect on the adsorption of EBT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gupta, V.K.; Kumar, R.; Nayak, A.; Saleh, T.A.; Barakat, M.A.: Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Adv. Colloid Interface Sci. 193–194, 24–34 (2013)

    Article  Google Scholar 

  2. Liu, M.; Chen, Q.; Lu, K.; Huang, W.; Lü, Z.; Zhou, C.; Yu, S.; Gao, C.: High efficient removal of dyes from aqueous solution through nanofiltration using diethanolamine-modified polyamide thin-film composite membrane. Sep. Purif. Technol. 173, 135–143 (2017)

    Article  Google Scholar 

  3. Alver, E.; Bulut, M.; Metin, A.U.; Çiftçi, H.: One step effective removal of Congo Red in chitosan nanoparticles by encapsulation. Spectrochim. Acta A 171, 132–138 (2017)

    Article  Google Scholar 

  4. Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P.: Remediation of dyes in textile effuent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77, 247–255 (2001)

    Article  Google Scholar 

  5. Zollinger, H.: Colour Chemistry-Synthesis, Properties of Organic Dyes and Pigments. VCH Publishers, New York (1987)

    Google Scholar 

  6. Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M.: Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloid Interface Sci. 209, 172–184 (2014)

    Article  Google Scholar 

  7. Zee, F.P.V.D.; Villaverde, S.: Combined anaerobic-aerobic treatment of azo dyes—a short review of bioreactor studies. Water Res. 39(8), 1425–1440 (2005)

    Article  Google Scholar 

  8. Kansal, S.K.; Swati Sood, S.; Umar, A.; Mehta, S.K.: Photocatalytic degradation of Eriochrome Black T dye using well-crystalline anatase TiO\(_{2}\) nanoparticles. J Alloys Compd. 581, 392–397 (2013)

    Article  Google Scholar 

  9. Uygur, A.: Reuse of decolourised wastewater of azo dyes containing dichlorotriazinyl reactive groups using an advanced oxidation method. Color. Technol. 117, 111–113 (2001)

    Article  Google Scholar 

  10. Turhan, K.; Turgut, Z.: Decolorization of direct dye in textile wastewater by ozonization in a semi-batch bubble column reactor. Desalination 242(1–3), 256–263 (2009)

    Article  Google Scholar 

  11. Abegglen, C.; Joss, A.; Boehler, M.; Buetzer, S.; Siegrist, H.: Reducing the natural color of membrane bioreactor permeate with activated carbon or ozone. Water Sci. Technol. 60(1), 155–165 (2009)

    Article  Google Scholar 

  12. Stolz, A.: Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol. 56(1–2), 69–80 (2001)

    Article  Google Scholar 

  13. Tan, B.H.; Teng, T.T.; Omar, A.K.M.: Removal of dyes and industrial dye wastes by magnesium chloride. Wat. Res. 34(2), 597–601 (2000)

    Article  Google Scholar 

  14. Lin, S.H.; Lin, C.M.: Treatment of textile waste effluents by ozonation and chemical coagulation. Water Res. 27(12), 1743–1748 (1993)

    Article  Google Scholar 

  15. Vučurović, V.M.; Razmovski, R.N.; Miljić, U.D.; Puškaš, V.S.: Removal of cationic and anionic azo dyes from aqueous solutions by adsorption on maize stem tissue. J. Taiwan Inst. Chem. Eng. 45, 1700–1708 (2014)

    Article  Google Scholar 

  16. Gupta, V.K.: Application of low-cost adsorbents for dye removal—a review. J. Environ. Manage. 90(8), 2313–2342 (2009)

    Article  Google Scholar 

  17. Albadarin, A.B.; Mangwandi, C.: Mechanisms of Alizarin Red S and Methylene blue biosorption onto olive stone by-product: isotherm study in single and binary systems. J. Environ. Manage. 164, 86–93 (2015)

    Article  Google Scholar 

  18. Poots, V.J.P.; McKay, G.; Healy, J.J.: Removal of basic dye from effluent using wood as an adsorbent. J. Water Pollut. Control Fed. 50(5), 926–935 (1978)

    Google Scholar 

  19. Gupta, V.K.; SuhasAli, I.; Saini, V.K.: Removal of rhodamine B, fast green, and methylene blue from wastewater using red mud, an aluminum industry waste. Ind. Eng. Chem. Res. 43(7), 1740–1747 (2004)

    Article  Google Scholar 

  20. Gupta, V.K.; Ali, I.; Suhas Mohan, D.: Equilibrium uptake and sorption dynamics for the removal of a basic dye (basic red) using low-cost adsorbents. J. Colloid Interface Sci. 265(2), 257–264 (2003)

    Article  Google Scholar 

  21. Gupta, G.S.; Prasad, G.; Singh, V.N.: Removal of chrome dye from aqueous solutions by mixed adsorbents: fly ash and coal. Water Res. 24(1), 45–50 (1990)

    Article  Google Scholar 

  22. Gupta, V.K.; Mittal, A.; Gajbe, V.; Mittal, J.: Adsorption of basic fuchsin using waste materials—bottom ash and deoiled soya—as adsorbents. J. Colloid Interface Sci. 319(1), 30–39 (2008)

    Article  Google Scholar 

  23. McKay, G.; Porter, J.F.; Prasad, G.R.: The removal of dye colours from aqueous solutions by adsorption on low-cost materials. Water Air Soil Pollut. 114(3), 423–438 (1999)

    Article  Google Scholar 

  24. Namasivayam, C.; Prabha, D.; Kumutha, M.: Removal of direct red and acid brilliant blue by adsorption on to banana pith. Bioresour. Technol. 64(1), 77–79 (1998)

    Article  Google Scholar 

  25. Gupta, V.K.; Ali, I.: Removal of endosulfan and methoxychlor from water on carbon slurry. Environ. Sci. Technol. 42(3), 766–770 (2008)

    Article  Google Scholar 

  26. Poots, V.J.P.; McKay, G.; Healy, J.J.: The removal of acid dye from effluent using natural adsorbents-I peat. Water Res. 10(12), 1061–1061 (1976)

    Article  Google Scholar 

  27. Yu, Y.; Zhang, Y.; Wang, Z.: Adsorption of water-soluble dye onto functionalized resin. J. Colloid Interface Sci. 242(2), 288–293 (2001)

    Article  Google Scholar 

  28. Juang, R.; Wu, F.; Tseng, R.: Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels. J. Colloid Interface Sci. 227(2), 437–444 (2000)

    Article  Google Scholar 

  29. Haque, E.; Jun, J.W.; Jhung, S.H.: Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235). J. Hazard. Mater. 185(1), 507–511 (2011)

    Article  Google Scholar 

  30. Feng, M.; You, W.; Wu, Z.; Chen, Q.; Zhan, H.: Mildly alkaline preparation and methylene blue adsorption capacity of hierarchical flower-like sodium titanate. ACS Appl. Mater. Interfaces 5(23), 12654–12662 (2013)

    Article  Google Scholar 

  31. Boujaady, H.E.; Rhilassi, A.E.; Bennani-Ziatni, M.; Hamri, R.E.; Taitai, A.; Lacout, J.L.: Removal of a textile dye by adsorption on synthetic calcium phosphates. Desalination 275(1–3), 10–16 (2011)

    Article  Google Scholar 

  32. Asfaram, A.; Fathi, M.; Khodadoust, S.; Naraki, M.: Removal of Direct Red 12B by garlic peel as a cheap adsorbent: kinetics, thermodynamic and equilibrium isotherms study of removal. Spectrochim. Acta A. 127, 415–421 (2014)

    Article  Google Scholar 

  33. Cao, J.S.; Lin, J.X.; Fang, F.; Zhang, M.T.; Hu, Z.R.: A new absorbent by modifying walnut shell for the removal of anionic dye: kinetic and thermodynamic studies. Bioresour. Technol. 163, 199–205 (2014)

    Article  Google Scholar 

  34. Fathi, M.R.; Asfaram, A.; Farhangi, A.: Removal of Direct Red 23 from aqueous solution using corn stalks: isotherms, kinetics and thermodynamic studies. Spectrochim. Acta A 135, 364–372 (2015)

    Article  Google Scholar 

  35. Ihsanullah,; Abbas, A.; Al-Amer, A.M.; Laoui, T.; Almarri, M.; Khraisheh, M.; Atieh, A.M.; Nasser, M.S.: Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep. Purif. Technol. 157, 141–161 (2016)

    Article  Google Scholar 

  36. Ihsanullah,; Asmaly, H.A.; Saleh, T.A.; Laoui, T.; Gupta, V.K.; Atieh, M.A.: Enhanced adsorption of phenols from liquids by aluminum oxide/carbon nanotubes: comprehensive study from synthesis to surface properties. J. Mol. Liq. 206, 176–182 (2015)

    Article  Google Scholar 

  37. Asmaly, H.A.; Abussaud, B.; Ihsanullah; Saleh, T.A.; Gupta, V.K.; Atieh, M.A.: Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: from synthesis to enhanced removal of phenol. J. Saudi Chem. Soc. 19(5), 511–520 (2015)

  38. Abussaud, B.; Asmaly, H.A.; Ihsanullah; Saleh, T.A.; Gupta, V.K.; Atieh, M.A.: Sorption of phenol from waters on activated carbon impregnated with iron oxide, aluminum oxide and titanium oxide. J. Mol. Liq. 213, 351–359 (2016)

  39. Asmaly, H.A.; Abussaud, B.; Ihsanullah; Saleh, T.A.; Bukhari, A.A.; Laoui, T.; Shemsi, A.M.; Gupta, V.K.; Atieh, M.A.: Evaluation of micro and nano carbon-based adsorbents for the removal of phenol from aqueous solutions. Toxicol. Environ. Chem. 97, 1164–1179 (2015)

  40. Abbas, A.; Abussaud, B.; Ihsanullah; Al-Baghli, N.; Khraisheh, M.; Atieh, M.A.: Benzene removal by iron oxide nanoparticle decorated carbon nanotubes. J. Nanomater. Article ID 5654129 (2016). doi:10.1155/2016/5654129

  41. Abbas, A.; Abussaud, B.; Ihsanullah; Al-Baghli, N.; Redhwi, H.H.: Adsorption of Toluene and Paraxylene from Aqueous Solution Using Pure and Iron Oxide Impregnated Carbon Nanotubes: Kinetics and Isotherms Study. Bioinorg. Chem. Appl. Article ID 2853925 (2017). doi:10.1155/2017/2853925

  42. Zubair, M.; Jose, J.; Al-Harthi, M.A.: Evaluation of mechanical and thermal properties of microwave irradiated poly (styrene-co-methyl methacrylate)/graphene nanocomposites. Compo. Interfaces 22(7), 595–610 (2015)

    Article  Google Scholar 

  43. Zubair, M.; Jose, J.; Emwas, A.H.; Al-Harthi, M.A.: Effect of modified graphene and microwave irradiation on the mechanical and thermal properties of poly(styrene-co-methyl methacrylate)/graphene nanocomposites. Surf. Interface Anal. 46, 630–639 (2014)

    Article  Google Scholar 

  44. El-Kady, M.F.; Kaner, R.B.: Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 4, 1475 (2013)

    Article  Google Scholar 

  45. Feng, L.; Liu, Z.: Graphene in biomedicine: opportunities and challenges. Nanomedicine 6, 317–324 (2011)

    Article  Google Scholar 

  46. Yusuf, M.; Elfghi, F.M.; Zaidi, S.A.; Abdullah, E.C.; Khan, M.A.: Applications of graphene and its derivatives as an adsorbent for heavy metal and dye removal: a systematic and comprehensive overview. RSC Adv. 5, 50392–50420 (2015)

    Article  Google Scholar 

  47. Wang, Y.; Liang, S.; Chen, B.; Guo, F.; Yu, S.; Tang, Y.: Synergistic removal of Pb(II), Cd(II) and humic acid by Fe\(_{3}\)O\(_{4}\)@mesoporous silica-graphene oxide composites. PLoS ONE 8, e65634 (2013)

    Article  Google Scholar 

  48. Ren, Y.; Yan, N.; Feng, J.; Ma, J.; Wen, Q.; Li, N.; Dong, Q.: Adsorption mechanism of copper and lead ions onto graphene nanosheet/\(\delta \)-MnO\(_{2}\). Mater. Chem. Phys. 136, 538–544 (2012)

    Article  Google Scholar 

  49. Xu, J.; Wang, L.; Zhu, Y.: Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir 28, 8418–8425 (2012)

    Article  Google Scholar 

  50. Chang, Y.P.; Ren, C.L.; Qu, J.C.; Chen, X.G.: Preparation and characterization of Fe\(_{3}\)O\(_{4}\)/graphene nanocomposite and investigation of its adsorption performance for aniline and p-chloroaniline. Appl. Surf. Sci. 261, 504–509 (2012)

    Article  Google Scholar 

  51. Liu, T.; Li, Y.; Du, Q.; Sun, J.; Jiao, Y.; Yang, G.; Wang, Z.; Xia, Y.; Zhang, W.; Wang, K.; Zhu, H.; Wu, D.: Adsorption of methylene blue from aqueous solution by graphene. Colloids Surf. B Biointerfaces 90, 197–203 (2012)

    Article  Google Scholar 

  52. Robati, D.; Mirza, B.; Rajabi, M.; Moradi, O.; Tyagi, I.; Agarwal, S.; Gupta, V.K.: Removal of hazardous dyes-BR 12 and methyl orange using graphene oxide as an adsorbent from aqueous phase. Chem. Eng. J. 284, 687–697 (2016)

    Article  Google Scholar 

  53. Farghali, A.A.; Bahgat, M.; El Rouby, W.M.A.; Khedr, M.H.: Preparation, decoration and characterization of graphene sheets for methyl green adsorption. J. Alloys Compd. 555, 193–200 (2013)

    Article  Google Scholar 

  54. Luna, M.D.G.D.; Flores, E.D.; Genuino, D.A.D.; Futalan, C.M.; Wan, M.W.: Adsorption of Eriochrome Black T (EBT) dye using activated carbon prepared from waste rice hulls—optimization, isotherm and kinetic studies. J. Taiwan Inst. Chem. Eng. 44(4), 646–653 (2013)

    Article  Google Scholar 

  55. Ahmaruzzaman, A.; Ahmed, M.J.K.; Begum, S.: Remediation of Eriochrome Black T-contaminated aqueous solutions utilizing H\(_{3}\)PO\(_{4}\)-modified berry leaves as a non-conventional adsorbent. Desal. Water Treat. 56, 1507–1519 (2015)

    Article  Google Scholar 

  56. Moeinpour, F.; Alimoradi, A.; Kazemi, : Efficient removal of Eriochrome Black-T from aqueous solution using NiFe\(_{2}\)O\(_{4}\) magnetic nanoparticles. J. Environ. Health Sci. Eng. 12, 112 (2014)

    Article  Google Scholar 

  57. Zandipak, R.; Sobhanardakani, S.: Synthesis of NiFe\(_{2}\)O\(_{4}\) nanoparticles for removal of anionic dyes from aqueous solution. Desalin. Water Treat. 57, 11348–11360 (2016)

    Article  Google Scholar 

  58. Bandari, F.; Safa, F.; Shariati, S.: Application of response surface method for optimization of adsorptive removal of Eriochrome Black T using magnetic multi-wall carbon nanotube nanocomposite. Arab. J. Sci. Eng. 40(12), 3363–3372 (2015)

    Article  Google Scholar 

  59. Saleh, T.A.; Muhammad, A.M.; Ali, S.A.: Synthesis of hydrophobic cross-linked polyzwitterionic acid for simultaneous sorption of Eriochrome Black T and chromium ions from binary hazardous waters. J. Colloid Interface Sci. 468, 324–333 (2016)

    Article  Google Scholar 

  60. Dong, K.; Qiu, F.; Guo, X.; Xu, J.; Yang, D.; He, K.: Adsorption behavior of azo dye Eriochrome Black T from aqueous solution by \(\beta \)-cyclodextrins/polyurethane foam material. Polym. Plast. Technol. Eng. 52, 452–460 (2013)

    Article  Google Scholar 

  61. Mittal, A.; Gupta, V.K.: Adsorptive removal and recovery of the azo dye Eriochrome Black T. Toxicol. Environ. Chemi. 92(10), 1813–1823 (2010)

    Article  Google Scholar 

  62. Zubair, M.; Jarrah, N.; Manzar, M.S.; Al-Harthi, M.; Daud, M.; Mu’azu, N.D.; Haladu, S.A.: Adsorption of Eriochrome Black T from aqueous phase on MgAl-, CoAl- and NiFe- calcined layered double hydroxides: kinetic, equilibrium and thermodynamic studies. J. Mol. Liq. 230, 344–352 (2017)

    Article  Google Scholar 

  63. Sahin, O.; Saka, C.; Kutluay, S.: Cold plasma and microwave radiation applications on almond shell surface and its effects on the adsorption of Eriochrome Black T. J. Ind. Eng. Chem. 19(5), 1617–1623 (2013)

    Article  Google Scholar 

  64. Attallah, O.A.; Al-Ghobashy, M.A.; Nebsen, M.; Salem, M.Y.: Removal of cationic and anionic dyes from aqueous solution with magnetite/pectin and magnetite/ silica/pectin hybrid nanocomposites: kinetic, isotherm and mechanism analysis. RSC Adv. 6, 11461–11480 (2016)

    Article  Google Scholar 

  65. Deng, X.; Lü, L.; Li, H.; Luo, F.: The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. J. Hazard. Mater. 183(1–3), 923–930 (2010)

    Article  Google Scholar 

  66. Dinda, D.; Gupta, A.; Saha, S.K.: Removal of toxic Cr(VI) by UV-active functionalized graphene oxide for water purification. J. Mater. Chem. A. 1, 11221–11228 (2013)

  67. Khalid, A.; Ibrahim, A.; Al-Hamouz, O.C.; Laoui, T.; Benamor, A.; Atieh, M.A.: Fabrication of polysulfone nanocomposite membranes with silver-doped carbon nanotubes and their antifouling performance. J. Appl. Polym. Sci. 134, 44688 (2017)

    Google Scholar 

  68. Ho, Y.S.; Chiu, W.T.; Wang, C.C.: Regression analysis for the sorption isotherms of basic dyes on sugarcane dust. Bioresour. Technol. 96, 1285–1291 (2005)

    Article  Google Scholar 

  69. Kumar, M.; Tamilarasan, R.: Modeling studies: adsorption of aniline blue by using Prosopis juliflora carbon/Ca/alginate polymer composite beads. Carbohydr. Polym. 92, 2171–2180 (2013)

    Article  Google Scholar 

  70. Kumar, K.V.: Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. J. Hazard. Mater. B137, 1538–1544 (2006)

    Article  Google Scholar 

  71. Oh, J.; Lee, J.H.; Koo, J.C.; Choi, H.R.; Lee, Y.; Kim, T.; Luong, N.D.; Nam, J.D.: Graphene oxide porous paper from amine-functionalized poly(glycidyl methacrylate)/graphene oxide core-shell microspheres. J. Mater. Chem. 20, 9200–9204 (2010)

    Article  Google Scholar 

  72. Ihsanullah; Khaldi, F.A.A.; Abusharkh, B.; Khaled, M.; Atieh, M.A.; Nasser, M.S.; Laoui, T.; Agarwal, S.; Tyagi, I.; Gupta, V.K.: Adsorptive removal of cadmium(II) ions from liquid phase using acid modified carbon-based adsorbents. J. Mol. Liq. 204, 255–263 (2015)

  73. Ihsanullah; Khaldi, F.A.A.; Sharkh, B.A.; Abulkibash, A.M.; Qureshi, M.I.; Laoui, T.; Atieh, M.A.: Effect of acid modification on adsorption of hexavalent chromium (Cr(VI)) from aqueous solution by activated carbon and carbon nanotubes. Desalin. Water Treat 57, 7232–7244 (2016)

  74. Namasivayam, C.; Kavitha, D.: Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigm. 54, 47–58 (2002)

    Article  Google Scholar 

  75. Faria, P.C.C.; Orfao, J.J.M.; Pereira, M.F.R.: Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res. 38, 2043–2052 (2004)

    Article  Google Scholar 

  76. Belhachemi, M.; Addoun, F.: Comparative adsorption isotherms and modeling of methylene blue onto activated carbons. Appl Water Sci. 1, 111–117 (2011)

    Article  Google Scholar 

  77. Xu, D.; Tan, X.L.; Chen, C.L.; Wang, X.K.: Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 154, 407–416 (2008)

    Article  Google Scholar 

  78. Kumar, A.S.K.; Jiang, S.J.; Tseng, W.L.: Effective adsorption of chromium(VI)/Cr(III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. J. Mater. Chem. A. 3, 7044–7057 (2015)

    Article  Google Scholar 

  79. Zubair, M.; Daud, M.; McKayd, G.; Shehzad, F.; Al-Harthi, M.: Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Appl. Clay Sci. 143, 279–292 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihsanullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, A., Zubair, M. & Ihsanullah A Comparative Study on the Adsorption of Eriochrome Black T Dye from Aqueous Solution on Graphene and Acid-Modified Graphene. Arab J Sci Eng 43, 2167–2179 (2018). https://doi.org/10.1007/s13369-017-2543-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2543-x

Keywords

Navigation