Skip to main content
Log in

Application of Response Surface Method for Optimization of Adsorptive Removal of Eriochrome Black T Using Magnetic Multi-Wall Carbon Nanotube Nanocomposite

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Response surface method was employed to optimize adsorptive removal of Eriochrome Black T (EBT) from aqueous solutions using the magnetic multi-wall carbon nanotube (MMWCNT) nanocomposite. The nanocomposite was synthesized by mixing commercial multi-wall carbon nanotube and a solution containing ferric and ferrous salts in highly basic media at elevated temperature. Properties of the nanocomposite were characterized by scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrometer, and X-ray diffractometer. Adsorption experiments were carried out based on a central composite design (CCD) with four input variables including adsorbent dosage (w: 2–10 g/L), contact time (t: 35–95 min), pH (2–9), and ionic strength (i: 0.02–0.1). Regression analysis showed good fit of the experimental data to a quadratic polynomial model with coefficient of determination (R 2) value of 0.9897 and Fisher ratio of 103.34. Adequacy of the model was verified by analysis of variance (ANOVA), lack-of-fit test, and residual analysis. Optimum values of the variables for maximum adsorptive removal of EBT were predicted by the model (w = 5.39 g/L; pH =  2.11; t = 78 min and i = 0.08). The observed dye removal of 99.80% in the predicted optimal condition confirmed high efficiency of the response surface method in modeling EBT removal from aqueous solutions using MMWCNT nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baban A., Yediler A., Ciliz N.K.: Integrated water management and CP implementation for wool and textile blend processes. Clean Soil Air Water 38, 84–90 (2010)

    Article  Google Scholar 

  2. Soloman P.A., Basha C.A., Ramamurthi V., Koteeswaran K., Balasubramanian N.: Electrochemical degradation of Remazol Black B dye effluent. Clean Soil Air Water 37, 889–900 (2009)

    Article  Google Scholar 

  3. Gupta V.K., Suhas: Application of low-cost adsorbents for dye removal—a review. J. Environ. Manage. 90, 2313–2342 (2009)

    Article  Google Scholar 

  4. Baocheng Q., Jiti Z., Xuemin X., Chunli Z., Hongxia Z., Xiaobai Z.: Adsorption behavior of azo dye C.I. acid red 14 in aqueous solution on surface soils. J. Environ. Sci. (China) 20, 704–709 (2008)

    Article  Google Scholar 

  5. Schubert M., Muffler A., Mourad S.: The use of a radial basis neural network and genetic algorithm for improving the efficiency of laccase-mediated dye decolourization. J. Biotechnol. 161, 429–436 (2012)

    Article  Google Scholar 

  6. Tripathi P., Srivastava V.C., Kumar A.: Optimization of an azo dye batch adsorption parameters using Box–Behnken design. Desalination 249, 1273–1279 (2009)

    Article  Google Scholar 

  7. Kornaros M., Lyberatos G.: Biological treatment of wastewaters from a dye manufacturing company using a trickling filter. J. Hazard. Mater. 136, 95–102 (2006)

    Article  Google Scholar 

  8. Wang S.: A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes Pigments 76, 714–720 (2008)

    Article  Google Scholar 

  9. Lin C.-H., Gung C.-H., Sun J.J., Suen S.-Y.: Preparation of polyethersulfone/plant-waste-particles mixed matrix membranes for adsorptive removal of cationic dyes from water. J. Membr. Sci. 471, 285–298 (2014)

    Article  Google Scholar 

  10. Wawrzkiewicz M.: Removal of C.I. Basic Blue 3 dye by sorption onto cation exchange resin, functionalized and non-functionalized polymeric sorbents from aqueous solutions and wastewaters. Chem. Eng. J. 217, 414–425 (2013)

    Article  Google Scholar 

  11. Barka N., Qourzal S., Assabbane A., Nounah A., Ait-Ichou Y.: Photocatalytic degradation of an azo reactive dye, Reactive Yellow 84, in water using an industrial titanium dioxide coated media. Arab. J. Chem. 3, 279–283 (2010)

    Article  Google Scholar 

  12. Wang R., Cai X., Shen F.: TiO2 hollow microspheres with mesoporous surface: superior adsorption performance for dye removal. Appl. Surf. Sci. 305, 352–358 (2014)

    Article  Google Scholar 

  13. Irama M., Guoa C., Guan Y., Ishfaq A., Liu H.: Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe 3 O 4 hollow nanospheres. J. Hazard. Mater. 181, 1039–1050 (2010)

    Article  Google Scholar 

  14. Sivashankar R., Sathya A.B., Vasantharaj K., Sivasubramanian V.: Magnetic composite an environmental super adsorbent for dye sequestration—a review. Environ. Nanotechnol. Monit. Manage. 1–2, 36–49 (2014)

    Article  Google Scholar 

  15. Gong J., Wang B., Zeng G.M., Yang C.P., Niu C.G., Niu Q.Y., Zhou W.J., Liang Y.: Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J. Hazard. Mater. 164, 1517–1522 (2009)

    Article  Google Scholar 

  16. Qu S., Huang F., Yu S., Chen G., Kong J.: Magnetic removal of dyes from aqueous solution using multi-walled carbon nanotubes filled with Fe2 O3 particles. J. Hazard. Mater. 160, 643–647 (2008)

    Article  Google Scholar 

  17. Madrakian T., Afkhami A., Ahmadi M., Bagheri H.: Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J. Hazard. Mater. 196, 109–114 (2011)

    Article  Google Scholar 

  18. Ferreira S.L.C., Bruns R.E., Ferreira H.S., Matos G.D., David J.M., Brandäo G.C., da Silva E.G.P., Portugal L.A., dos Reis P.S., Souza A.S., Dos Santos W.N.L.: Box–Behnken design: an alternative for the optimization of analytical methods. Anal. Chim. Acta 597, 179–186 (2007)

    Article  Google Scholar 

  19. Roosta M., Ghaedi M., Shokri N., Daneshfar A., Sahraei R., Asghari A.: Optimization of the combined ultrasonic assisted/adsorption method for the removal of malachite green by gold nanoparticles loaded on activated carbon: experimental design. Spectrochim. Acta Part A 118, 55–65 (2014)

    Article  Google Scholar 

  20. Roosta M., Ghaedi M., Daneshfar A., Sahraei R.: Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon. Spectrochim. Acta Part A 122, 223–231 (2014)

    Article  Google Scholar 

  21. Hassani A., Soltani R.D.C., Karaca S, Khataee A.: Preparation of montmorillonite–alginate nanobiocomposite for adsorption of a textile dye in aqueous phase: isotherm, kinetic and experimental design approaches. J. Ind. Eng. Chem. 21, 1197–1207 (2015)

    Article  Google Scholar 

  22. Singha K.P., Gupta S., Singh A.K., Sinha S.: Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. J. Hazard. Mater. 186, 1462–1473 (2011)

    Article  Google Scholar 

  23. Iida H., Takayanagi K., Nakanishi T., Osaka T.: Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J. Colloid Interface Sci. 314, 274–280 (2007)

    Article  Google Scholar 

  24. Petcharoen K., Sirivat A.: Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng. B 177, 421–427 (2012)

    Article  Google Scholar 

  25. Evans, M: Optimization of Manufacturing Processes: A Response Surface Approach. Carlton House Terrace, London (2003)

  26. Oliveira L.C.A., Rios R.V.R.A., Fabris J.D., Sapag K., Garg V.K., Lago R.M.: Clay–iron oxide magnetic composites for the adsorption of contaminants in water. Appl. Clay Sci. 22, 169–177 (2003)

    Article  Google Scholar 

  27. Legodi M.A., DeWaal D.: The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes Pigments 74, 161–168 (2007)

    Article  Google Scholar 

  28. Goyanes S., Rubiolo G.R., Salazar A., Jimeno A., Corcuera M.A., Mondragon I.: Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy. Diam. Relat. Mater. 16, 412–417 (2007)

    Article  Google Scholar 

  29. Waldron R.D.: Infrared spectra of ferrites. Phys. Rev. 99, 1727–1735 (1955)

    Article  Google Scholar 

  30. Ma M., Zhang Y., Yu W., Shen H.Y., Zhang H.Q., Gu N.: Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids and Surfaces A: Physicochem. Eng. Asp. 212, 219–226 (2003)

    Article  Google Scholar 

  31. Gao Z.M., Wu T.H., Peng S.Y.: Preparation and structural features of ultrafine spinel magnesium ferrites. Acta Phys. Chim. Sin. 11, 395–399 (1995)

    Google Scholar 

  32. Yetilmezsoy K., Demirel S., Vanderbei R.J.: Response surface modeling of Pb(II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J. Hazard. Mater. 171, 551–562 (2009)

    Article  Google Scholar 

  33. Namasivayam C., Kavitha D.: Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigments 54, 47–58 (2002)

    Article  Google Scholar 

  34. Patterson, D: Colorants and Auxiliaries: Organic Chemistry and Application Properties. Vol. 1, BTTG-Shirley,Manchester (1990)

  35. Masoud M.S., Hammud H.H., Beidas H.: Dissociation constants of eriochrome black T and eriochrome blue black RC indicators and the formation constants of their complexes with Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), and Pb(II) under different temperatures and in presence of different solvents. Thermochim. Acta 381, 119–131 (2002)

    Article  Google Scholar 

  36. Lin D.H., Xing B.S.: Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environ. Sci. Technol. 42, 7254–7259 (2008)

    Article  Google Scholar 

  37. Pan B., Xing B.: Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 42, 9005–9013 (2008)

    Article  Google Scholar 

  38. Alberghina, G., Bianchini, R., Fichera, M., Fisichella, S.: Dimerization of Cibacron Blue F3GA and other dyes: influence of salts and temperature. Dyes Pigments 46, 129–37 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Safa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandari, F., Safa, F. & Shariati, S. Application of Response Surface Method for Optimization of Adsorptive Removal of Eriochrome Black T Using Magnetic Multi-Wall Carbon Nanotube Nanocomposite. Arab J Sci Eng 40, 3363–3372 (2015). https://doi.org/10.1007/s13369-015-1785-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1785-8

Keywords

Navigation