Skip to main content
Log in

Deep analysis of adsorption isotherm for rapid sorption of Acid Blue 93 and Reactive Red 195 on reactive graphene

  • Nano Materials in Sustainable Advanced Technologies and Environmental Pollution
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Graphene-based adsorbent was prepared by adopting a green synthetic route via the chemical exfoliation of graphite and low-temperature thermal activation. Prepared reactive graphene (RG) was characterized through various techniques, and its adsorption capabilities for textile dye removal were investigated for Acid Blue-93 (AB) and Reactive Red-195 (RR) under different operational conditions. The dye sorption equilibrium and mechanism were comprehensively studied using isotherm and kinetic models and compared statistically to explain the sorption behavior. Results show AB and RR adsorption by RG attains equilibrium in 60 min and 70 min, with a high sorption quantity of 397 mg g−1 and 262 mg g−1 (initial dye concentration of 100 mg L−1), respectively. The dye sorption anticipates that the high surface area (104.52 m2 gm−1) and constructed meso-macroporous features of RG facilitated the interaction between the dye molecules and graphitic skeleton. The R-P isotherm fitted the best of equilibrium data, having the least variance in residuals for both dyes (AB = 0.00031 and RR = 0.00047). The pseudo-second order model best fitted the kinetics of sorption on RG, with chemisorption being the predominant process delimiting step. The overall results promise the dye removal capability of RG to be an efficient adsorbent for azo-based dyes from textile effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All the data used in this study is included in the manuscript and supplementary materials.

Abbreviations

ARE:

Average relative error

AT:

Temkin isotherm equilibrium binding constant

C e :

Adsorbate concentrations at equilibrium

CND:

Coefficient of non-determination

EABS:

Sum of absolute errors

FESEM:

Field emission scanning electron microscopy

FTIR:

Fourier transform infrared spectroscopy

HYBRID:

Hybrid fractional error function

K 2 :

Coefficient of non-determination

K F :

Freundlich isotherm constant

K L :

Langmuir affinity constant

K T :

Toth isotherm constant

MPSD:

Marquardt’s percent standard deviation

n :

Freundlich isotherm adsorption intensity

q e :

Sorption capacity at equilibrium

q max :

Maximum adsorption capacity

R 2 :

Coefficient of determination

RG:

Reactivate graphene

SNE:

Sum of Normalized Error

SSA:

Specific surface area

SSE:

Sum of squared errors

T :

Temperature in Kelvin

UV-Vis:

Ultraviolet-visible spectroscopy

XRD:

X-ray diffraction

n T :

Toth isotherm heterogeneity factor

References

  • Ahmad R (2009) Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). J Hazard Mater 171(1):767–773

    Article  CAS  PubMed  Google Scholar 

  • Alver E, Metin AÜ (2012) Anionic dye removal from aqueous solutions using modified zeolite: adsorption kinetics and isotherm studies. Chem Eng J 200–202:59–67

    Article  Google Scholar 

  • Ashokan P, Asaithambi M, Sivakumar V, Sivakumar P (2021) Batch and column mode adsorption studies of reactive red 195 dye using Adenanthera paronina L seed activated carbon. Groundw Sustain Dev 15:100671

    Article  Google Scholar 

  • Azizian S (2004) Kinetic models of sorption: a theoretical analysis. J Colloid Interface Sci 276(1):47–52

    Article  ADS  CAS  PubMed  Google Scholar 

  • Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Structural evolution during the reduction of chemically derived graphene oxide. Nat Chem 2(7):581–587

    Article  CAS  PubMed  Google Scholar 

  • Belessi V, Romanos G, Boukos N, Lambropoulou D, Trapalis C (2009) Removal of reactive Red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles. J Hazard Mater 170(2):836–844

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Sen TK, Yeneneh AM, Meikap BC (2019) Synthesis and characterization of a novel Ca-alginate-biochar composite as efficient zinc (Zn2+) adsorbent: thermodynamics, process design, mass transfer and isotherm modeling. Sep Sci Technol 54(7):1106–1124

    Article  CAS  Google Scholar 

  • Bradder P, Ling SK, Wang S, Liu S (2011) Dye adsorption on layered graphite oxide. J Chem Eng Data 56(1):138–141

    Article  CAS  Google Scholar 

  • Bulin C, Xiong Q, Zheng R, Li C, Ma Y, Guo T (2024) High efficiency removal of methyl blue using phytic acid modified graphene oxide and adsorption mechanism. Spectrochim Acta Part A Mol Biomol Spectrosc 307:123645

    Article  CAS  Google Scholar 

  • Chen C, Zhang X, Deb H, Liang F, Zhu H, Cui K, Zhang Y, Yao J (2021) Synthesis of an eco-friendly bamboo cellulose-grafted-ployacrylamide flocculant and its flocculation performance on papermaking wastewater. Fibers and Polymers 22(6):1518–1525

    Article  CAS  Google Scholar 

  • Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Biores Technol 97(9):1061–1085

    Article  CAS  Google Scholar 

  • Deb H, Hasan K, Islam MZ, Kai L, Yang S, Zhang Y, Yao J (2023) The statistical error optimization of dye sorption equilibria for the precise prediction of adsorption isotherms on activated graphene. Applied Sciences 13(14):8106

    Article  CAS  Google Scholar 

  • Deb H, Islam MZ, Ahmed A, Hasan MK, Hossain MK, Hu H, Chen C, Yang S, Zhang Y, Yao J (2022) Kinetics & dynamic studies of dye adsorption by porous graphene nano-adsorbent for facile toxic wastewater remediation. J Water Process Eng 47:102818

    Article  Google Scholar 

  • Demirbas A (2009) Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J Hazard Mater 167(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Deng J-H, Zhang X-R, Zeng G-M, Gong J-L, Niu Q-Y, Liang J (2013) Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chem Eng J 226:189–200

    Article  CAS  Google Scholar 

  • Dey AK, Dey A (2021) Selection of optimal processing condition during removal of Reactive Red 195 by NaOH treated jute fibre using adsorption. Groundw Sustain Dev 12:100522

    Article  Google Scholar 

  • Doğan M, Alkan M (2003) Adsorption kinetics of methyl violet onto perlite. Chemosphere 50(4):517–528

    Article  ADS  PubMed  Google Scholar 

  • El-Khaiary MI (2008) Least-squares regression of adsorption equilibrium data: comparing the options. J Hazard Mater 158(1):73–87

    Article  CAS  PubMed  Google Scholar 

  • Gan L, Li B, Chen Y, Yu B, Chen Z (2019) Green synthesis of reduced graphene oxide using bagasse and its application in dye removal: a waste-to-resource supply chain. Chemosphere 219:148–154

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J Phys Chem C 115(34):17009–17019

    Article  CAS  Google Scholar 

  • Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal – a review. J Environ Manage 90(8):2313–2342

    Article  CAS  PubMed  Google Scholar 

  • Herbert A, Kumar U (2023) Removal of Acid blue 93 dye from aqueous media using an agro-industrial waste as bioadsorbent: an OPAT and DoE approach. Int J Environ Anal Chem 103(17):5599–5618

    Article  CAS  Google Scholar 

  • Inyinbor AA, Adekola FA, Olatunji GA (2016) Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp. Water Resour Industry 15:14–27

    Article  Google Scholar 

  • Islam MZ, Dong Y, Khoso NA, Ahmed A, Deb H, Zhu Y, Wentong Y, Fu Y (2019) Continuous dyeing of graphene on cotton fabric: binder-free approach for electromagnetic shielding. Appl Surf Sci 496:143636

    Article  Google Scholar 

  • Islam MZ, Deb H, Hasan MK, Khoso NA, Hossain MK, Wentong Y, Qi X, Dong Y, Zhu Y, Fu Y (2022) A facile one-pot scalable production of super electromagnetic shielding conductive cotton fabric by hierarchical graphene-composites. J Mater Sci 57(32):15451–15463

    Article  ADS  CAS  Google Scholar 

  • Jeong H-K, Lee YP, Lahaye RJWE, Park M-H, An KH, Kim IJ, Yang C-W, Park CY, Ruoff RS, Lee YH (2008) Evidence of graphitic AB stacking order of graphite oxides. J Am Chem Soc 130(4):1362–1366

    Article  CAS  PubMed  Google Scholar 

  • Jiang H (2011) Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors. Small 7(17):2413–2427

    Article  CAS  PubMed  Google Scholar 

  • Kamedulski P, Skorupska M, Binkowski P, Arendarska W, Ilnicka A, Lukaszewicz JP (2021) High surface area micro-mesoporous graphene for electrochemical applications. Sci Rep 11(1):22054

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Kul AR, Koyuncu H, Turan A, Aldemir A (2023) Comparative research of isotherm, kinetic, and thermodynamic studies for neutral red adsorption by activated carbon prepared from apple peel. Water Air Soil Pollut 234(6):383

    Article  ADS  CAS  Google Scholar 

  • Kumar KV, Porkodi K, Rocha F (2008) Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: comparison of various error functions. J Hazard Mater 151(2):794–804

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Du Q, Liu T, Peng X, Wang J, Sun J, Wang Y, Wu S, Wang Z, Xia Y, Xia L (2013) Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem Eng Res Des 91(2):361–368

    Article  CAS  Google Scholar 

  • Li Y, Liu Y, Liu Z, Wan X, Chen H, Zhong J, Zhang Y-F (2023) Efficient selective recycle of acid blue 93 by NaOH activated acrolein/chitosan adsorbent via size-matching effect. Carbohyd Polym 301:120314

    Article  CAS  Google Scholar 

  • Li Y, Lu H, Wang Y, Zhao Y, Li X (2019) Efficient removal of methyl blue from aqueous solution by using poly(4-vinylpyridine)–graphene oxide–Fe3O4 magnetic nanocomposites. J Mater Sci 54(10):7603–7616

    Article  ADS  CAS  Google Scholar 

  • Lin J, Wang L (2009) Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Front Environ Sci Eng China 3(3):320–324

    Article  CAS  Google Scholar 

  • Luhadiya N, Kundalwal SI, Sahu SK (2021) Investigation of hydrogen adsorption behavior of graphene under varied conditions using a novel energy-centered method. Carbon Letters 31(4):655–666

    Article  Google Scholar 

  • Ma L, Zhao G, Fang Y, Dai W, Ma N (2017) Facile synthesis of mesoporous calcium carbonate particles with finger citron residue as template and their adsorption performances for Congo red. Adsorpt Sci Technol 36(3–4):872–887

    Google Scholar 

  • Mahmoud ME, Nabil GM, El-Mallah NM, Bassiouny HI, Kumar S, Abdel-Fattah TM (2016) Kinetics, isotherm, and thermodynamic studies of the adsorption of reactive red 195 A dye from water by modified Switchgrass Biochar adsorbent. J Ind Eng Chem 37:156–167

    Article  CAS  Google Scholar 

  • Mahvi AH, Dalvand A (2019) Kinetic and equilibrium studies on the adsorption of Direct Red 23 dye from aqueous solution using montmorillonite nanoclay. Water Quality Res J 55(2):132–144

    Article  Google Scholar 

  • Menkiti MC, Aniagor CO (2018) Parametric studies on descriptive isotherms for the uptake of crystal violet dye from aqueous solution onto lignin-rich adsorbent. Arab J Sci Eng 43(5):2375–2392

    Article  CAS  Google Scholar 

  • Moreira VR, Lebron YAR, da Silva MM, de Souza SLV, Jacob RS, de Vasconcelos CKB, Viana MM (2020) Graphene oxide in the remediation of norfloxacin from aqueous matrix: simultaneous adsorption and degradation process. Environ Sci Pollut Res 27(27):34513–34528

    Article  CAS  Google Scholar 

  • Nassar MY, Ahmed IS, Mohamed TY, Khatab M (2016) A controlled, template-free, and hydrothermal synthesis route to sphere-like α-Fe2O3 nanostructures for textile dye removal. RSC Adv 6(24):20001–20013

    Article  ADS  CAS  Google Scholar 

  • Ng JCY, Cheung WH, McKay G (2002) Equilibrium studies of the sorption of Cu(II) ions onto chitosan. J Colloid Interface Sci 255(1):64–74

    Article  ADS  CAS  PubMed  Google Scholar 

  • Ng JCY, Cheung WH, McKay G (2003) Equilibrium studies for the sorption of lead from effluents using chitosan. Chemosphere 52(6):1021–1030

    Article  ADS  CAS  PubMed  Google Scholar 

  • Pang X-Y, Gong F (2008) Study on the adsorption kinetics of Acid Red 3B on expanded graphite. E-Journal of Chemistry 5:786025

    Article  Google Scholar 

  • Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9):3019–3023

    Article  CAS  Google Scholar 

  • Pérez-Calderón J, Santos MV, Zaritzky N (2018) Reactive RED 195 dye removal using chitosan coacervated particles as bio-sorbent: analysis of kinetics, equilibrium and adsorption mechanisms. J Environ Chem Eng 6(5):6749–6760

    Article  Google Scholar 

  • Pham T-H, Lee B-K, Kim J (2016) Improved adsorption properties of a nano zeolite adsorbent toward toxic nitrophenols. Process Saf Environ Prot 104:314–322

    Article  CAS  Google Scholar 

  • Pu C, Wan J, Liu E, Yin Y, Li J, Ma Y, Fan J, Hu X (2017) Two-dimensional porous architecture of protonated GCN and reduced graphene oxide via electrostatic self-assembly strategy for high photocatalytic hydrogen evolution under visible light. Appl Surf Sci 399:139–150

    Article  ADS  CAS  Google Scholar 

  • Ramesha GK, Vijaya KA, Muralidhara HB, Sampath S (2011) Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci 361(1):270–277

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sabna V, Thampi SG, Chandrakaran S (2018) Adsorptive removal of cationic and anionic dyes using graphene oxide. Water Sci Technol 78(4):732–742

    Article  CAS  PubMed  Google Scholar 

  • Salem A-NM, Ahmed MA, El-Shahat MF (2016) Selective adsorption of amaranth dye on Fe3O4/MgO nanoparticles. J Mol Liq 219:780–788

    Article  CAS  Google Scholar 

  • Sarici ÖzdemİrÇ (2018) Adsorptive removal of methylene blue by fruit shell: isotherm studies. Fullerenes, Nanotubes, Carbon Nanostruct 26(9):570–577

    Article  ADS  Google Scholar 

  • Sen GS, Bhattacharyya KG (2011) Kinetics of adsorption of metal ions on inorganic materials: a review. Adv Coll Interface Sci 162(1):39–58

    Google Scholar 

  • Shao Y, Wang X, Kang Y, Shu Y, Sun Q, Li L (2014) Application of Mn/MCM-41 as an adsorbent to remove methyl blue from aqueous solution. J Colloid Interface Sci 429:25–33

    Article  ADS  CAS  PubMed  Google Scholar 

  • Shi M, Sheng D, Zhuang Q, Xie A, Dong W (2022) Cationically anchored conjugated microporous polymers for fast adsorption of negative dyes from aqueous solution. ACS Appl Polym Mater 4(9):6582–6591

    Article  CAS  Google Scholar 

  • Sreńscek-Nazzal J, Narkiewicz U, Morawski AW, Wróbel RJ, Michalkiewicz B (2015) Comparison of optimized isotherm models and error functions for carbon dioxide adsorption on activated carbon. J Chem Eng Data 60(11):3148–3158

    Article  Google Scholar 

  • Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  • Subbaiah MV, Wen H-Y, Gollakota ARK, Wen J-C, Andrew Lin K-Y, Shu C-M, Mallikarjuna RG, Zyryanov GV, Wen J-H, Tian Z (2022) Removal of sulfonated azo Reactive Red 195 textile dye from liquid phase using surface-modified lychee (Litchi chinensis) peels with quaternary ammonium groups: Adsorption performance, regeneration, and mechanism. J Mol Liq 368:120657

    Article  Google Scholar 

  • Tan IAW, Ahmad AL, Hameed BH (2008) Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. Desalination 225(1):13–28

    Article  CAS  Google Scholar 

  • Touhid SSB, Shawon MRK, Deb H, Khoso NA, Ahmed A, Fu F, Liu XD (2020) Nature inspired rGO-TiO2 micro-flowers on polyester fabric using semi-continuous dyeing method: a binder-free approach towards durable antibacterial performance. Synth Met 261:116298

    Article  Google Scholar 

  • Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Gholami Z, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohyd Polym 113:115–130

    Article  CAS  Google Scholar 

  • Wang H, Xie R, Zhang J, Zhao J (2018) Preparation and characterization of distillers’ grain based activated carbon as low cost methylene blue adsorbent: mass transfer and equilibrium modeling. Adv Powder Technol 29(1):27–35

    Article  CAS  Google Scholar 

  • Wong YC, Szeto YS, Cheung WH, McKay G (2004) Adsorption of acid dyes on chitosan—equilibrium isotherm analyses. Process Biochem 39(6):695–704

    Article  Google Scholar 

  • Wu L, Sun J, Wu M (2017) Modified cellulose membrane prepared from corn stalk for adsorption of methyl blue. Cellulose 24(12):5625–5638

    Article  CAS  Google Scholar 

  • Yan F, Hu D (2019) Insight into the removal of Acid Blue 93 by cationic Eucalyptus cellulose with different alkyl chain lengths: properties and mechanisms. Desalin Water Treat 159:181–192

    Article  CAS  Google Scholar 

  • Yang J, Shojaei S, Shojaei S (2022) Removal of drug and dye from aqueous solutions by graphene oxide: adsorption studies and chemometrics methods. NPJ Clean Water 5(1):5

    Article  CAS  Google Scholar 

  • Zhang F, Yang K, Liu G, Chen Y, Wang M, Li S, Li R (2022) Recent advances on graphene: synthesis, properties and applications. Compos A Appl Sci Manuf 160:107051

    Article  CAS  Google Scholar 

  • Zhang GQ, Bai T, Chen TF, Fan WT, Zhang X (2014) Conversion of methanol to light aromatics on Zn-modified nano-HZSM-5 zeolite catalysts. Ind Eng Chem Res 53(39):14932–14940

    Article  CAS  Google Scholar 

  • Zhang W, Zhou C, Zhou W, Lei A, Zhang Q, Wan Q, Zou B (2011) Fast and considerable adsorption of methylene blue dye onto graphene oxide. Bull Environ Contam Toxicol 87(1):86–90

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks are extended to Professor Md. Mizanur Rahman from the School of Mechanical Engineering at Hangzhou Dianzi University, China, for his insightful suggestions and valuable comments that greatly contributed to improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. HD and MKH conceptualized and designed the research work. Material preparation, data collection, and analysis were performed by HD, MKH, and MZI. The first draft and revised manuscript was written by HD. SY, YZ, and JY commented on draft and revised manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yong Zhang.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Tito Roberto Cadaval Jr

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 568 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, H., Hasan, M.K., Islam, M.Z. et al. Deep analysis of adsorption isotherm for rapid sorption of Acid Blue 93 and Reactive Red 195 on reactive graphene. Environ Sci Pollut Res (2024). https://doi.org/10.1007/s11356-024-31918-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11356-024-31918-w

Keywords

Navigation