Skip to main content
Log in

Resistorless Reconfigurable nth-Order Filter Based on DPCDTA for Multi-mode Filtering Applications

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a new topology for realizing current-mode reconfigurable nth-order filter for multi-mode wireless communication equipments, which is based on a new active device, namely digitally programmable current differencing transconductance amplifier (DPCDTA). The proposed filter is resistorless, and it employs n DPCDTAs and n grounded capacitors with one input and one output terminals. The signal path of the filter does not contain any switches, and wide tuning coefficient of the filter is implemented using programmable current division network with zero standby power consumption in the DPCDTA. Also, the proposed topology exhibits broader programmable features to accommodate wide range of selectivity requirements, which can be used as the most compatible structure for field-programmable analog array and very suitable for multi-mode filtering applications. The programming ability of variable filter orders from first to fourth providing low-pass, high-pass, and band-pass responses, and programming ability of variable cutoff frequencies from 1.14 to 11.75 MHz are given as application examples. The performance of the circuits have been verified and evaluated through post-layout simulations using Cadence IC5141 with GlobalFoundries’ 0.18 μm CMOS process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Csipkes, D.; Csipkes, G.; Farago, P.; Fernandez-Canque, H.; Hintea, S.: An OTA-C field programmable analog array for multi-mode filtering applications. In: International Conference on OPTIM’13, pp. 1176–1182 (2012)

  2. Becker J., Henrici F., Trendelenburg S., Ortmanns M., Manoli Y.: A field-programmable analog array of 55 digitally tunable OTAs in a hexagonal lattice. IEEE J. Solid State Circuits 43(12), 2759–2768 (2008)

    Article  Google Scholar 

  3. Kutuk H., Kang S.M.: Filter design using a new field-programmable analog array (FPAA). Analog Integr. Circuits Signal Process. 14(1-2), 81–90 (1997)

    Article  Google Scholar 

  4. Lebel E., Assi A., Sawan M.: Programmable monolithic Gm-C band-pass filter: design and experimental results. Analog Integr. Circuits Signal Process. 54(1), 21–29 (2008)

    Article  Google Scholar 

  5. Kenington, P.B.: RF and Baseband Techniques for Software Defined Radio. Artech House, Norwood, MA (2005)

  6. Alzaher H.A., Tasadduq N.A., Al-Ees O.: Digitally programmable high-order current-mode universal filters. Analog Integr. Circuits Signal Process. 67(2), 179–187 (2011)

    Article  Google Scholar 

  7. Alikhani A., Ahmadi A.: A novel current-mode four-quadrant CMOS analog multiplier/divider. AEU Int. J. Electron. Commun. 66(7), 581–586 (2012)

    Article  Google Scholar 

  8. Satansup J., Tangsrirat W.: Single-input five-output electronically tunable current-mode biquad consisting of only ZC-CFTAs and grounded capacitors. Radioengineering 20(3), 650–656 (2012)

    Google Scholar 

  9. Pandey, N.; Nand, D.; Khan, Z.: Single-input four-output current mode filter using operational floating current conveyor. Act. Passive Electron. Compon. 2013, 1–8 (2013). doi:10.1155/2013/318560

  10. Song, S. X.; Wang, W. D.: A new high order current mode filter with multiple inputs and single output based on MOCCCII. In: International Conference on CCSP, pp. 2172–2175 (2006)

  11. Minaei, S.; Sayin, O. K.; Kuntman, H.: Nth-order current transfer function synthesis using a high-performance electronically tunable current conveyor. In: Electrotechnical Conference on MELECON, pp. 15–18 (2006)

  12. Zhang, P.; Zhou, X.; Xiao, S.: A current-mode nth-order multifunction filter using minimum number of DVCCs. In: International Conference on NCIS, pp. 323–326 (2011)

  13. Yuce E., Minaei S.: On the realization of high-order current-mode filter employing current controlled conveyors. Comput. Electr. Eng. 34(3), 165–172 (2008)

    Article  MATH  Google Scholar 

  14. Horng J.W.: Analytical synthesis of general high-order voltage/current transfer functions using CCIIs. Microelectr. J. 43(8), 546–554 (2012)

    Article  MathSciNet  Google Scholar 

  15. Intawichai, K.; Tangsrirat, W.: Signal flow graph realization of nth-order current-mode allpass filters using CFTAs. In: International Conference on ECTI-CON’10th, pp. 1–6 (2013)

  16. Alzaher H.A., Tasadduq N.A., Al-Ees O.: Implementation of reconfigurable nth-order filter based on CCII. Analog Integr. Circuits Signal Process. 75(3), 539–545 (2013)

    Article  Google Scholar 

  17. Biolek, D.: CDTA—building block for current-mode analog signal processing. In: Proceedings of ECCTD’03, pp. 397–400. Krakow (2003)

  18. Uygur, A.; Kuntman,H.: Low-voltage current differencing transconductance amplifier in a novel allpass configuration. In: Proceedings MELECON’06, pp. 23–26. Spain (2006)

  19. Keskin A.Ü., Biolek D., Hancioglu E., Biolková V.: Current-mode KHN filter employing current differencing transconductance amplifiers. AEÜ Int. J. Electron. Commun. 60(6), 443–446 (2006)

    Article  Google Scholar 

  20. Khateb F., Biolek D.: Bulk-driven current differencing transconductance amplifier. Circuits Syst. Signal Process. 30(5), 1071–1089 (2011)

    Article  Google Scholar 

  21. Xu J., Wang C.H., Jin J., Xia Z.M.: Low-voltage high-linearity wideband current differencing transconductance amplifier and its application on current-mode active filter. Radioengineering 23(1), 512–522 (2014)

    Google Scholar 

  22. Biolek D., Hancioglu E., Keskin A.Ü.: High-performance current differencing transconductance amplifier and its application in precision current-mode rectification. AEÜ Int. J. Electron. Commun. 62(2), 92–96 (2008)

    Article  Google Scholar 

  23. Bult K., Geelen G.: An inherently linear and compact MOST-only current-division technique. IEEE J. Solid State Circuits 27(12), 1730–1735 (1992)

    Article  Google Scholar 

  24. Alzaher H.A., Tasadduq N.A.: A compact digitally programmable reconfigurable filter for dual-mode BT/802.11b receivers. AEÜ Int. J. Electron. Commun. 67(10), 898–904 (2013)

    Article  Google Scholar 

  25. Alzaher H.A., Tasadduq N.A., Al-Ees O., Al-Ammari F.: A complementary metal-oxide semiconductor digitally programmable current conveyor. Int. J. Circuit Theory Appl. 41(1), 69–81 (2013)

    Google Scholar 

  26. Voo T., Toumazou C.: High-speed current mirror resistive compensation technique. Electron Lett. 31(4), 248–250 (1995)

    Article  Google Scholar 

  27. Pankiewicz B., Wojcikowski M., Szczepanski S., Sun Y.: A field programmable analog array for CMOS continuous-time OTA-C filter applications. IEEE J. Solid State Circuits 37(2), 125–136 (2002)

    Article  Google Scholar 

  28. Tangsrirat W., Tanjareon W.: Current-mode multiphase sinusoidal oscillator using current differencing transconductance amplifiers. Circuits Syst. Signal Process. 27(1), 81–93 (2008)

    Article  Google Scholar 

  29. Fabre A., Saaid O., Barthelemy H.: On the frequency limitations of the circuits based on second generation current conveyors. Analog Integr. Circuits Signal Process. 7(2), 113–129 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhua Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Wang, C., Xia, Z. et al. Resistorless Reconfigurable nth-Order Filter Based on DPCDTA for Multi-mode Filtering Applications. Arab J Sci Eng 40, 2423–2436 (2015). https://doi.org/10.1007/s13369-015-1717-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1717-7

Keywords

Navigation