Skip to main content

Characteristics of Capacitor: Fundamental Aspects

  • Chapter
  • First Online:
Handbook of Nanocomposite Supercapacitor Materials I

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 300))

Abstract

The capacitor is a passive electrical device, used to collect electrical energy by generating a potential difference. It is generally consisting of combination of two conductors placed next to each other separated by dielectric medium. The performance of a capacitor expressed in terms of the capacitance (C) depends on the dimension/geometry of the plate/electrode and the dielectric constant of the material, where the dielectric can be defined by insulating medium having permittivity, with no AC power losses or DC leakage. The capacitor shows different response to AC and DC sources. These are mainly used to supply power in several electronic and electrical systems. Therefore, this chapter provides the fundamental aspects of the capacitors and their basic properties. It emphasizes on the parallel plate model , the basic terminologies associated with the capacitors along with the equivalent circuits of the capacitor and its response to the externally applied AC and DC sources. It also describes about different types of capacitors that are being fabricated using different materials and different construction techniques. These different types of capacitors provide some unique properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Kotz, M. Carlen, Electrochim. Acta 45, 2483 (2000)

    Article  CAS  Google Scholar 

  2. R. Katz Publications, H. Semat, R. Katz, DigitalCommons@University of Nebraska -Lincoln 25-1 Capacitance of an Isolated Sphere in Vacuum (1958)

    Google Scholar 

  3. R. Natarajan, Power System Capacitors (CRC Press, Boca Raton, 2006)

    Google Scholar 

  4. R.P. Deshpande, Capacitor (McGraw-Hill Education, New York, 2014)

    Google Scholar 

  5. W. Emphasis, P. Concepts, E. Processes, Dielectiric Phenomena in Solids: With Emphasis on Physical Concepts of Electronic Processes (Elsevier Academic Press, California, 2004)

    Google Scholar 

  6. D.W. Hess, K.F. Jensen, Microelectronics Processing (American Chemical Society, Washington DC, 1989)

    Book  Google Scholar 

  7. T.W. Dakin, I.E.E.E. Electr, Insul. Mag. 22, 11 (2006)

    Article  Google Scholar 

  8. K.K. Kar (ed.), Composite Materials: Processing Applications Characterization (Springer, Berlin, 2017)

    Google Scholar 

  9. W.J. Sarjeant, in Proceedings of Electrical Electronics Insulation Conference (IEEE, Chicago, IL, USA, 1989), pp. 1–51

    Google Scholar 

  10. Harry E. Green, IEEE Trans. Microw. Theory Tech. 47, 365 (1999)

    Article  Google Scholar 

  11. H. Nishiyama, M. Nakamura, IEEE Trans. Compon., Hybrids, Manuf. Technol. 16, 360 (1993)

    Google Scholar 

  12. A.D. Rawlins, IMA J. Appl. Math. (Institute of Mathematics and Its Applications) 34, 119 (1985)

    Google Scholar 

  13. S. Gevorgian, H. Berg, in 2001 31st European Microwave Conference (IEEE, London, England, 2001), pp. 1–4

    Google Scholar 

  14. J.R. Riba, F. Capelli, Energies 11, 1 (2018)

    Google Scholar 

  15. J. Crowley, Proc. ESA Annual Meeting on Electrostatics 1 (2008)

    Google Scholar 

  16. J. Tahalyani, K.K. Rahangdale, R. Aepuru, B. Kandasubramanian, S. Datar, RSC Adv. 6, 36588 (2016)

    Article  CAS  Google Scholar 

  17. Q. Li, F.-Z. Yao, Y. Liu, G. Zhang, H. Wang, Q. Wang, Annu. Rev. Mater. Res. 48, 219 (2018)

    Article  CAS  Google Scholar 

  18. N.A.B. Zulkifli, M.A. Johar, O.M.F. Marwah, M.H.I. Ibrahim, IOP Conf. Ser.: Mater. Sci. Eng. 226 (2017)

    Google Scholar 

  19. P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.J. Ploehn, H.C. Zur Loye, Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage (2009)

    Google Scholar 

  20. L. Qi, L. Petersson, T. Liu, J. Internation, Council. Electr. Eng. 4, 1 (2014)

    Google Scholar 

  21. M. Kohno, J. Photopolym. Sci. Tec. 12, 189 (2008)

    Article  Google Scholar 

  22. S.T. Pai, Q. Zhang, Introduction to High Power Pulse Technology (World Scientific, Singapore, 2009)

    Google Scholar 

  23. J.P. Zheng, P.J. Cygan, T.R. Jow, I.E.E.E. Trans, Dielectr. Electr. Insu. 3, 144 (1996)

    Article  CAS  Google Scholar 

  24. G.I. Skanavi, F. Dielektrikov, editors, Oblast Silnykh Polei (Physics of Dielectrics; Strong Fields) (Gos. Izd. Fiz. Mat. Nauk (State Publ. House Phys. Math. Sci.), Moscow, 1958)

    Google Scholar 

  25. W.T. Shugg (ed.), Handbook of Electrical and Electronic Insulating Materials (Van Nostrand Reinhold, New York, 1986)

    Google Scholar 

  26. W.R. Bell, IEEE Trans. Electr. Insu. EI-12, 281 (1977)

    Google Scholar 

  27. C.T. Lynch (ed.), Practical Handbook of Materials Science (CRC Press, Boca Raton, FL, 1989)

    Google Scholar 

  28. E. Forster, H. Yamashita, C. Mazzettii, M. Pompili, L. Caroli, S. Patrissi, I.E.E.E. Trans, Dielectr. Electr. Insu. 1, 440 (1994)

    Article  CAS  Google Scholar 

  29. R.A. Flinn, P.K. Trojan, Engineering Materials and Their Applications, 2nd ed. (Houghton Mifflin, 1981)

    Google Scholar 

  30. M.G. Danikas, I.E.E.E. Trans, Dielectr. Electr. Insu. 1, 1196 (1994)

    Article  CAS  Google Scholar 

  31. A.A. Al-Arainy, N.H. Malik, M.I. Qureshi, I.E.E.E. Trans, Dielectr. Electr. Insu. 1, 305 (1994)

    Article  Google Scholar 

  32. S. Paul, Paul Scherz - Practical Electronics for Inventors 2 E (2006, McGraw-Hill_TAB Electronics).Pdf, second (Mc Graw Hill, 2006)

    Google Scholar 

  33. J. Biird, Electrical Circuit Theory and Technology, 3rd edn. (Elsevier Ltd., Burlington, 2007)

    Book  Google Scholar 

  34. M. Hallikainen, F. Ulaby, M. Abdelrazik, I.E.E.E. Trans, Antennas Propag. 34, 1329 (2004)

    Article  Google Scholar 

  35. P. Hammond, Electromagnetism for Engineers, 3rd edn. (Pergamon Press, Great Britain, 1986)

    Google Scholar 

  36. A. Lewandowski, P. Jakobczyk, M. Galinski, M. Biegun, Phys. Chem. Chem. Phys. 15, 8692 (2013)

    Article  CAS  Google Scholar 

  37. H.A. Andreas, J. Electrochem. Soc. 162, A5047 (2015)

    Article  CAS  Google Scholar 

  38. J.C. Kuenen, G.C.M. Meijer, I.E.E.E. Trans, Instrum. Meas. 45, 89 (1996)

    Article  Google Scholar 

  39. C.J. Kaiser, The Capacitor Handbook, First edit (Springer, Netherlands, 1993)

    Book  Google Scholar 

  40. N. Valentine, M.H. Azarian, M. Pecht, Microelectron. Reliab. 92, 123 (2019)

    Article  CAS  Google Scholar 

  41. J.S. Ho, S.G. Greenbaum, A.C.S. Appl, Mater. Inter. 10, 29189 (2018)

    Article  CAS  Google Scholar 

  42. H. Trinh, J.B. Talbot, J. Am. Ceram. Soc. 86, 905 (2009)

    Article  Google Scholar 

  43. S. Ducharme, ACS Nano 3, 2447 (2009)

    Article  CAS  Google Scholar 

  44. K.K. Kar, A. Hodzic (eds.), Developments in Nanocomposites (Research Publishing Services, Singapore, 2014)

    Google Scholar 

  45. T. Zednicek, B. Vrana, W. Millman, C. Reynolds, Carts-Conference 142 (2002)

    Google Scholar 

  46. K.K. Kar, A. Hodzic (eds.), Carbon Nanotube Based Nanocomposites: Recent Development (Research Publishing Services, Singapore, 2011)

    Google Scholar 

  47. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan, K.K. Kar, A. Matsuda, Prog. Energy Combust. Sci. 75, 100786 (2019)

    Article  Google Scholar 

  48. P. Sharma, T.S. Bhatti, Energ. Convers. Manage. 51, 2901 (2010)

    CAS  Google Scholar 

  49. J. Cherusseri, R. Sharma, K.K. Kar, Carbon 105, 113 (2016)

    Article  CAS  Google Scholar 

  50. J. Cherusseri, K.K. Kar, J. Mater. Chem. A 4, 9910 (2016)

    Article  CAS  Google Scholar 

  51. J. Cherusseri, K.K. Kar, Phys. Chem. Chem. Phys. 18, 8587 (2016)

    Article  CAS  Google Scholar 

  52. J. Cherusseri, K.K. Kar, RSC Adva. 6, 60454 (2016)

    Article  CAS  Google Scholar 

  53. R. Sharma, K.K. Kar, J. Mater. Chem. A 3, 11948 (2015)

    Article  CAS  Google Scholar 

  54. J. Cherusseri, K.K. Kar, RSC Advances 5, 34335 (2015)

    Article  CAS  Google Scholar 

  55. X. Chen, R. Paul, L. Dai, Natl. Sci. Rev. 4, 453 (2017)

    Article  CAS  Google Scholar 

  56. A. Sani, S. Siahaan, N. Mubarakah, Suherman, IOP Conf. Ser.: Mater. Sci. Eng. 309 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by Department of Science and Technology, India (DST/TMD/MES/2K16/37(G)), for carrying out this research work. Authors are thankful to Ms Tanvi Pal for drafting few figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal K. Kar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tahalyani, J., Akhtar, M.J., Cherusseri, J., Kar, K.K. (2020). Characteristics of Capacitor: Fundamental Aspects. In: Kar, K. (eds) Handbook of Nanocomposite Supercapacitor Materials I. Springer Series in Materials Science, vol 300. Springer, Cham. https://doi.org/10.1007/978-3-030-43009-2_1

Download citation

Publish with us

Policies and ethics