Skip to main content
Log in

An Electrochemical Sensor Based on Reduced Graphene Oxide and ZnO Nanorods-Modified Glassy Carbon Electrode for Uric Acid Detection

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, reduced graphene oxide–ZnO (RGO–ZnO) nanorods composite was prepared via a simple one-pot hydrothermal approach. The synthesized RGO–ZnO nanorods composite has been successfully applied for glassy carbon electrode (GCE) surface modification. The RGO–ZnO nanorods composite-modified GCE was applied for sensitive and selective determination of uric acid (UA). The biosensor exhibited a linear dependence on UA concentration ranging from 1 to 800 μM with a detection limit of 0.312 μM(S/N =  3). The proposed UA sensor also showed an excellent stability, reproducibility and anti-interference property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bui L.V., Cooper C.: Reverse-phase liquid chromatographic determination of benzoic and sorbic acids in foods. J. Assoc. Off. Anal. Chem. 70(5), 892–896 (1987)

    Google Scholar 

  2. Alderman M., Aiyer K.J.V.: Uric acid: role in cardiovascular disease and effects of losartan. Curr. Med. Res. Opin. 20(3), 369–379 (2004). doi:10.1185/030079904125002982

    Article  Google Scholar 

  3. Sun Z., Fu H., Deng L., Wang J.: Redox-active thionine-graphene oxide hybrid nanosheet: one-pot, rapid synthesis, and application as a sensing platform for uric acid. Anal. Chim. Acta 761, 84–91 (2013). doi:10.1016/j.aca.2012.11.057

    Article  Google Scholar 

  4. Dai X., Fang X., Zhang C., Xu R., Xu B.: Determination of serum uric acid using high-performance liquid chromatography (HPLC)/isotope dilution mass spectrometry (ID-MS) as a candidate reference method. J. Chromatogr. B 857(2), 287–295 (2007). doi:10.1016/j.jchromb.2007.07.035

    Article  Google Scholar 

  5. Zanon N.C.M., Oliveira O.N. Jr, Caseli L.: of uricase enzyme in Langmuir and Langmuir-Blodgett films of fatty acids: Possible use as a uric acid sensor. J. Colloid Interface Sci. 373(1), 69–74 (2012). doi:10.1016/j.jcis.2011.07.095

    Article  Google Scholar 

  6. Georgakopoulos C.D., Lamari F.N., Karathanasopoulou I.N., Gartaganis V.S., Pharmakakis N.M., Karamanos N.K.: Tear analysis of ascorbic acid, uric acid and malondialdehyde with capillary electrophoresis. Biomed. Chromatogr. 24(8), 852–857 (2010)

    Google Scholar 

  7. Lebid M., Omari M.: Synthesis and electrochemical properties of LaFeO3 oxides prepared via Sol–Gel method. Arab. J. Sci. Eng. 39(1), 147–152 (2014). doi:10.1007/s13369-013-0883-8

    Article  Google Scholar 

  8. Fattah-alhosseini A.: Modified point defect model for the electrochemical behavior of the passive films formed on alloy C (UNS N10002) in Borax solutions. Arab. J. Sci. Eng. 40(1), 63–67 (2015). doi:10.1007/s13369-014-1501-0

    Article  Google Scholar 

  9. Zheng Y., Wang A., Lin H., Fu L., Cai W.: Sensitive electrochemical sensor for direct phoxim detection based on an electrodeposited reduced graphene oxide-gold nanocomposite. RSC Adv. 5(20), 15425–15430 (2015). doi:10.1039/C4RA15872E

    Article  Google Scholar 

  10. Huang Y., Bu L., Wang W., Qin X., Li Z., Huang Z., Fu Y., Su X., Xie Q., Yao S.: One-pot preparation of uricase–poly(thiophene-3-boronic acid)–Ptnano composites for high-performance amperometric biosensing of uric acid. Sens. Actuators B Chem. 177, 116–123 (2013). doi:10.1016/j.snb.2012.10.101

    Article  Google Scholar 

  11. Yang C.L., Liu H.Y., Xia Q.L., Li Z.H., Xiao Q.Z., Lei G.T.: Effects of SiO2 nanoparticles and diethyl carbonate on the electrochemical properties of a fibrous nanocomposite polymer electrolyte for rechargeable Lithium batteries. Arab. J. Sci. Eng. 39(9), 6711–6720 (2014). doi:10.1007/s13369-014-1192-6

    Article  Google Scholar 

  12. Fu L., Zheng Y., Wang A., Cai W., Fu Z., Peng F.: A novel nonenzymatic hydrogen peroxide electrochemical sensor based on SnO2-reduced graphene oxide nanocomposite. Sens. Lett. 13(1), 81–84 (2015). doi:10.1166/sl.2015.3414

    Article  Google Scholar 

  13. Fu L., Zheng Y., Ren Q., Wang A., Deng B.: Green biosynthesis of SnO2 nanoparticles by plectranthus amboinicus leaf extract their photocatalytic activity toward rhodamine B degradation. J. Ovonic Res. 11(1), 21–26 (2015)

    Google Scholar 

  14. Fu L., Fu Z.: Plectranthus amboinicus leaf extract—assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity. Ceram Int. 41(2, Part A), 2492–2496 (2015). doi:10.1016/j.ceramint.2014.10.069

    Article  Google Scholar 

  15. Fu L., Cai W., Wang A., Zheng Y.: Photocatalytic hydrogenation of nitrobenzene to aniline over tungsten oxide-silver nanowires. Mater. Lett. 142(0), 201–203 (2015). doi:10.1016/j.matlet.2014.12.021

    Article  Google Scholar 

  16. Cao G.S., Wang R., Wang P., Li X., Wang Y., Wang G., Li J.: Electrochemical Co3O4 nanoporous thin films sensor for hydrogen peroxide detection. Nano 09(04), 1450047 (2014). doi:10.1142/S1793292014500477

    Article  Google Scholar 

  17. Erdem A., Karadeniz H., Caliskan A., Vaseashta A.: Electrochemical dna sensor technology for monitoring of drug–dna interactions. Nano 03(04), 229–232 (2008). doi:10.1142/S1793292008001064

    Article  Google Scholar 

  18. Wang A., Ng H.P., Xu Y., Li Y., Zheng Y., Yu J., Han F., Peng F., Fu L.: Gold nanoparticles: synthesis, stability test, and application for the rice growth. J. Nanomater. 2014, 6 (2014)

    Google Scholar 

  19. Fu L., Wang A., Zheng Y., Cai W., Fu Z.: Electrodeposition of Ag dendrites/AgCl hybrid film as a novel photodetector. Mater. Lett. 142(0), 119–121 (2015). doi:10.1016/j.matlet.2014.12.001

    Article  Google Scholar 

  20. Ahmad A., Hussain F., Deen K.M., Ahmad R., Ali L., Kamran M., Azam M.: Corrosion behavior of X-70 pipe steel in crude oil environments depending upon surface characteristics. Arab. J. Sci. Eng. 39(7), 5393–5404 (2014). doi:10.1007/s13369-014-1102-y

    Article  Google Scholar 

  21. Noor E., Al-Moubaraki A.: Influence of soil moisture content on the corrosion behavior of X60 steel in different soils. Arab. J. Sci. Eng. 39(7), 5421–5435 (2014). doi:10.1007/s13369-014-1135-2

    Article  Google Scholar 

  22. Wang A., Fu L., Ng H.P., Cai W., Zheng Y., Han F., Wang Z., Peng F.: Monitoring fluorescence lifetime changes of CdTe QDs synthesized with different stabilizers by Photoluminscence and Zeta potential measurement. J. Non Oxide Glass. 7(1), 1–12 (2015)

    Google Scholar 

  23. Tang L., Wang Y., Li Y., Feng H., Lu J., Li J.: Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv. Funct. Mater. 19(17), 2782–2789 (2009). doi:10.1002/adfm.200900377

    Article  Google Scholar 

  24. He L., Fu L., Tang Y.: Catalytic performance of a novel Cr/ZnAlLaO catalyst for oxidative dehydrogenation of isobutane. Catal. Sci. Technol. 5(2), 1115–1125 (2015). doi:10.1039/C4CY00990H

    Article  Google Scholar 

  25. Fu, L.; Zheng, Y.; Wang, Z.; Wang, A.; Deng, B.; Peng, F.: Facile synthesis of Ag-AgCl/ZnO hybrid with high efficiency photocatalytic property under visible light. Dig. J. Nanomater. Biostructures 10(1), 117–124 (2015)

  26. Nayak P., Santhosh P.N., Ramaprabhu S.: Electrochemical sensor for dopamine based on ZnO decorated graphene nanosheets as the transducer matrix. Graphene 1(1), 25–30 (2013). doi:10.1166/graph.2013.1009

    Article  Google Scholar 

  27. Jiang L., Gu S., Ding Y., Jiang F., Zhang Z.: Facile and novel electrochemical preparation of a graphene-transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin. Nanoscale 6(1), 207–214 (2014). doi:10.1039/c3nr03620k

    Article  Google Scholar 

  28. Li B., Liu T., Wang Y., Wang Z.: ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. J. Colloid Interface Sci. 377(1), 114–121 (2012). doi:10.1016/j.jcis.2012.03.060

    Article  Google Scholar 

  29. Zhang X., Zhang D., Chen Y., Sun X., Ma Y.: Electrochemical reduction of graphene oxide films: Preparation, characterization and their electrochemical properties. Chin. Sci. Bull. 57(23), 3045–3050 (2012). doi:10.1007/s11434-012-5256-2

    Article  Google Scholar 

  30. Ahmad M., Ahmed E., Hong Z.L., Khalid N.R., Ahmed W., Elhissi A.: Graphene–Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation. J. Alloy Compd. 577, 717–727 (2013). doi:10.1016/j.jallcom.2013.06.137

    Article  Google Scholar 

  31. Oukil D., Benhaddad L., Aitout R., Makhloufi L., Pillier F., Saidani B.: Electrochemical synthesis of polypyrrole films doped by ferrocyanide ions onto iron substrate: Application in the electroanalytical determination of uric acid. Sensors Actuators B Chem. 204, 203–210 (2014). doi:10.1016/j.snb.2014.07.086

    Article  Google Scholar 

  32. Wei Y., Li M., Jiao S., Huang Q., Wang G., Fang B.: Fabrication of CeO2 nanoparticles modified glassy carbon electrode and its application for electrochemical determination of UA and AA simultaneously. Electrochim. Acta 52(3), 766–772 (2006). doi:10.1016/j.electacta.2006.06.006

    Article  Google Scholar 

  33. Laviron E.: Adsorption autoinhibition and autocatalysis in polarography and linear potential sweep voltammetry. J. Electroanal. Chem. 52, 355–393 (1974)

    Article  Google Scholar 

  34. Laviron E.: General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 101, 19–28 (1979)

    Article  Google Scholar 

  35. Cao X., Xu Y., Luo L., Ding Y., Zhang Y.: Simultaneous determination of uric acid and ascorbic acid at the film of chitosan incorporating cetylpyridine bromide modified glassy carbon electrode. J. Solid State Electrochem. 14(5), 829–834 (2010). doi:10.1007/s10008-009-0861-y

    Article  Google Scholar 

  36. Manjunatha H., Nagaraju D.H., Suresh G.S., Venkatesha T.V.: Detection of uric acid in the presence of dopamine and high concentration of ascorbic acid using PDDA modified graphite electrode. Electroanalysis 21(20), 2198–2206 (2009). doi:10.1002/elan.200904662

    Article  Google Scholar 

  37. Afrasiabi, M.; Kianipour, S.; Babaei, A.; Nasimi, A.A.; Shabanian, M.: A new sensor based on glassy carbon electrode modified with nanocomposite for simultaneous determination of acetaminophen, ascorbic acid and uric acid. J. Saudi Chem. Soc. (2013). doi: 10.1016/j.jscs.2013.02.002

  38. Zhang H., Zhou Y., Zhang J., Gou L., Zheng J.: Highly selective and sensitive dopamine and uric acid electrochemical sensor fabricated with poly (orotic acid). J. Mol. Liq. 184, 43–50 (2013). doi:10.1016/j.molliq.2013.04.020

    Article  Google Scholar 

  39. Zhou Y., Zhang H., Xie H., Chen B., Zhang L., Zheng X., Jia P.: A novel sensor based on LaPO4 nanowires modified electrode for sensitive simultaneous determination of dopamine and uric acid. Electrochim. Acta 75(0), 360–365 (2012). doi:10.1016/j.electacta.2012.05.023

    Article  Google Scholar 

  40. Sun D., Zhao Q., Tan F., Wang X., Gao J.: Simultaneous detection of dopamine, uric acid, and ascorbic acid using SnO2 nanoparticles/multi-walled carbon nanotubes/carbon paste electrode. Anal. Methods 4(10), 3283 (2012). doi:10.1039/c2ay25401h

    Article  Google Scholar 

  41. Cui R., Wang X., Zhang G., Wang C.: Simultaneous determination of dopamine, ascorbic acid, and uric acid using helical carbon nanotubes modified electrode. Sens. Actuators B Chem. 161(1), 1139–1143 (2012). doi:10.1016/j.snb.2011.11.040

    Article  MathSciNet  Google Scholar 

  42. Liu X., Pan L., Lv T., Sun Z., Sun C.Q.: Visible light photocatalytic degradation of dyes by bismuth oxide-reduced graphene oxide composites prepared via microwave-assisted method. J. Colloid Interface Sci. 408, 145–150 (2013). doi:10.1016/j.jcis.2013.07.045

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Zheng, Y., Wang, A. et al. An Electrochemical Sensor Based on Reduced Graphene Oxide and ZnO Nanorods-Modified Glassy Carbon Electrode for Uric Acid Detection. Arab J Sci Eng 41, 135–141 (2016). https://doi.org/10.1007/s13369-015-1621-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1621-1

Keywords

Navigation