Skip to main content
Log in

Adaptive Decentralized PI Controller for Two Conical Tank Interacting Level System

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The implementation of control algorithms for the Multi-Input/Multi-Output systems is often complicated due to variations in process dynamics that occur because of change in operating point and the characteristics of nonlinear dynamic coupling. In this paper, the authors proposed regime-based multi-model adaptive control strategy for decoupling-based decentralized PI controller for a Two Conical Tank Interacting Level System (TCTILS) which is a Two-Input Two-Output interacting nonlinear system that exhibits nonlinear dynamics and dynamic interaction. The controller design is divided into two parts: firstly, a decoupling matrix is designed in order to minimize the interaction effects for each pair of linearized operating regimes. Then, the decentralized PI controller is designed for the TCTILS using stability boundary equations method and real-coded GA for each pair of linearized operating regimes. The stability analysis of the TCTILS with the designed set of decentralized PI controllers and decouplers is investigated for each pair of linearized operating regimes by using multivariable Nyquist plot method. Using simulation and experimental studies, the effectiveness and practicality of the proposed scheme is demonstrated on TCTILS experimental setup. The results reveal encouraging input tracking and disturbance rejection capabilities. The regime-based multi-model adaptive control strategy minimizes interaction effects effectively and meet the design specifications for each loop independently in each linearized operating regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gunnarsson S., Colignon V., Rousseaux O.: Tuning of a decoupling controller for 2 × 2 system using iterative feedback tuning. Control Eng. Pract. 11(9), 1035–1041 (2003)

    Article  Google Scholar 

  2. Gilbert A.F., Yousef A., Natarajan K., Deighton S.: Tuning of PI Controllers with one way decoupling in 2 × 2 MIMO systems based on finite frequency response data. J. Process Control 13(6), 553–567 (2003)

    Article  Google Scholar 

  3. Aström K.J., Johansson K.H., Wang Q.: Design of decoupled PI controllers for two-by-two systems. IEE Proc. Control Theory Appl. 149(1), 74–81 (2002)

    Article  Google Scholar 

  4. Johansen T., Murray-Smith R.: Multiple Model Approaches to Modeling and Control. Taylor and Francis Limited, London (1997)

    Google Scholar 

  5. Xue Z.K., Li S.Y.: Multi-model modeling and predictive control based on Local model networks. Control Intell. Syst. 34(2), 105–112 (2006)

    MATH  MathSciNet  Google Scholar 

  6. Arslan E., Camurdan M.C., Palazoglu A., Arkun Y.: Multi-model scheduling control of nonlinear systems using gap metric. Indus. Eng. Chem. Res. 43(26), 8275–8283 (2004)

    Article  Google Scholar 

  7. Jari M.B., Dale E.S., Hespanha J.P.: Multi-model adaptive control of a simulated pH neutralization process. Control Eng. Pract. 15(6), 663–672 (2007)

    Article  Google Scholar 

  8. Prakash J., Senthil R.: Design of observer based nonlinear model predictive controller for a continuous stirred tank reactor. J. Process Control 18(5), 504–514 (2008)

    Article  Google Scholar 

  9. Danielle D., Doug C.: A practical multiple model adaptive strategy for multivariable model predictive control. Control Eng. Pract. 11(6), 649–664 (2003)

    Article  Google Scholar 

  10. Narendra K.S., Balakrishnan J.: Adaptive control using multiple models. IEEE Trans. Autom. Control 4(2), 171–187 (1997)

    Article  MathSciNet  Google Scholar 

  11. Wojsznis, W.K.; Blevins, T.L.: Evaluating PID adaptive techniques for industrial implementation. In: Proceedings of the 2002 American Control Conference, pp. 1151–1155 (2002)

  12. Tan W., Marquez H.J., Chen T., Liu J.: Multi-model analysis and controller design for nonlinear processes. Comput. Chem. Eng. 28(12), 2667–2675 (2004)

    Article  Google Scholar 

  13. Gao, R.; O’dywer, A.; Oyle, C.E.: A nonlinear PID control for CSTR using local model networks. In: Proceedings of 4th World Congress on Intelligent Control and Automation, pp. 3278–3282 (2002)

  14. Galan O., Romagnoli J.A., Palazoglu A.: Real-time implementation of multilinear model-based control strategies-an application to a bench-scale pH neutralization reactor. J. Process Control 14(5), 571–579 (2004)

    Article  Google Scholar 

  15. Maghade D.K., Patre B.M.: Decentralized PI/PID controllers based on gain and phase margin specifications for TITO processes. ISA Trans. 51(4), 550–558 (2012)

    Article  Google Scholar 

  16. Samsudin, S.I.; Rahmat, M.F.; Wahab, N.A.; Sani G.M.; Razali, M.C.: Application of adaptive decentralized PI controller for activated sludge process. In: Proceedings of IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1792–1797 (2013)

  17. Husek, P.: Decentralized PI controller design based on phase margin specifications. IEEE Trans. Control Syst. Technol. 22(1), 346–351 (2013)

  18. Anandanatarajan R., Chidambaram M., Jayasingh T.: Limitations of a PI controller for a first order non-linear process with dead time. ISA Trans. 45(2), 185–199 (2006)

    Article  Google Scholar 

  19. Bhuvaneswari N.S., Uma G., Rangaswamy T.R.: Neuro based Model Reference Adaptive control of a conical tank level process. Control Intell. Syst. 36(1), 1–9 (2008)

    MathSciNet  Google Scholar 

  20. Bhuvaneswari N.S., Uma G., Rangaswamy T.R.: Adaptive and optimal control of a non-linear process using intelligent controllers. Appl. Soft Comput. 9(1), 182–190 (2009)

    Article  Google Scholar 

  21. Ravi, V.R.; Thyagarajan, T.: A de-centralised PID controller for interacting non linear systems. In: Proceedings of IEEE 2011 International Conference on Emerging Trends in Electrical and Computer Technology (ICETECT 2011), pp. 297–302 (2011)

  22. Ravi, V.R.; Thyagarajan, T.: Application of adaptive control technique for interacting non linear systems. In: Proceedings of IEEE International Conference on Electronics Computer Technology, pp. 386–392 (2011)

  23. BarrilJawatha, K.: Adaptive control technique for two tanks conical interacting system. In Proceedings of International Conference on Computing and Control Engineering (2012)

  24. Ravi, V.R.; Thyagarajan, T.; Dharsini, M.M.: A multiple model adaptive control strategy for model predictive controller for interacting non linear systems. In: Proceedings of International Conference on Process Control Automation and Computing, pp. 1–8 (2011)

  25. Ravi, V.R.; Thyagarajan, T.; Puviyarasi, B.: Centralised neuro controller for two conical tank interacting level system. In: Proceedings of IEEE International Conference on Advanced Communication Control and Computing Technologies, pp. 343–347 (2012)

  26. Ravi V.R., Thyagarajan T., Maheshwaran G.U.: Dynamic matrix control of a two tank conical interacting level system. Proc. Eng. 38, 2601–2610 (2012)

    Article  Google Scholar 

  27. Lii G.H., Chang C.H., Han K.W.: Analysis of robust control systems using stability equations. J. Control Syst. Technol. 1, 83–89 (1993)

    Google Scholar 

  28. Omer A.Y.D.O., Akkaya R.: An effective real coded GA based fuzzy controller for speed control of a BLDC motor without speed sensor. Turkey J. Electr. Eng. Comput. Sci. 19(3), 413–430 (2011)

    Google Scholar 

  29. Luyben L.W.: Process Modeling, Simulation and Control for Chemical Engineers, 2nd edn, Chemical Engineering Series. McGraw-Hill International Editions, New York (1991)

    Google Scholar 

  30. Niederlinski A.: A heuristic approach to the design of linear multivariable interacting control systems. Automatica 7(6), 691–701 (1971)

    Article  MATH  Google Scholar 

  31. Bequette B.W.: Process Control: Modeling, Design, and Simulation. Prentice-Hall, Englewood Cliffs (2003)

    Google Scholar 

  32. Eker I.: Second-order sliding mode control with PI sliding surface and experimental application to an electromechanical plant. Arab. J. Sci. Eng. 37(7), 1969–1986 (2012)

    Article  Google Scholar 

  33. Durairaj S., Devaraj D.: Reactive power dispatch incorporating thyristor controlled series capacitors using improved genetic algorithm. Arab. J. Sci. Eng. 34(1B), 173–185 (2009)

    Google Scholar 

  34. Wang Q.-G., He Y., Ye Z., Lin C., Hang C.C.: On loop phase margins of multivariable control systems. J. Process Control 18(2), 202–211 (2008)

    Article  Google Scholar 

  35. Ye Z., Wang Q.-G., Hang C.C.: Frequency domain approach to computing loop phase margins of multivariable systems. Indus. Eng. Chem. Res. 47(13), 4418–4424 (2008)

    Article  Google Scholar 

  36. Sang Q., Tao G.: Gain margins of adaptive control systems. IEEE Trans. Autom. Control 55(1), 104–115 (2010)

    Article  MathSciNet  Google Scholar 

  37. Leena G., Ray G.: A set of decentralized PID controllers for an n-link robot manipulator. Sadhana-Indian Acad. Sci. 37(3), 405–423 (2012)

    Google Scholar 

  38. Siljak D.D.: Nonlinear Systems: The Parameter Analysis and Design. Wiley, New York (1969)

    MATH  Google Scholar 

  39. NI 6238/6239 User Manual—isolated current input/current output devices—National Instruments, USA (2006)

  40. PID and Fuzzy toolkit—user manual, National Instruments, USA (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Ravi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravi, V.R., Thyagarajan, T. Adaptive Decentralized PI Controller for Two Conical Tank Interacting Level System. Arab J Sci Eng 39, 8433–8451 (2014). https://doi.org/10.1007/s13369-014-1366-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1366-2

Keywords

Navigation