Skip to main content
Log in

Decentralized PID controller design for TITO processes with experimental validation

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

In this paper, a design method of decentralized proportional–integral–derivative (PID) controller for two-input two-output processes based on pre-defined reference transfer function is proposed. An ideal decoupler is used to reduce the interaction among system variables. Free structure higher order diagonal controllers are computed for each decoupled subsystem by specifying closed-loop response in terms of dominant reference second order transfer function. Further, to obtain controllers in PID structure, the higher order diagonal controllers are truncated into first three terms of Maclaurin series. The stability of resulting PID controller is investigated. Two benchmark examples are illustrated to show the effectiveness of the proposed controller. An experimentation is performed on interacting coupled tank process to demonstrate the applicability in real life applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kumar VV, Rao VSR, Chidambaram M (2012) Centralized PI controllers for interacting multivariable processes by synthesis method. ISA Trans 51(3):400–409

    Article  Google Scholar 

  2. Luan X, Chen Q, Liu F (2014) Centralized PI control for high dimensional multivariable systems based on equivalent transfer function. ISA Trans 53(4):1554–1561

    Article  Google Scholar 

  3. Wang QG, Huang B, Guo X (2000) Auto-tuning of TITO decoupling controllers from step tests. ISA Trans 39(4):407–418

    Article  Google Scholar 

  4. Luyben WL (1986) Simple method for tuning SISO controllers in multivariable systems. Ind Eng Chem Process Des Dev 25(3):654–660

    Article  Google Scholar 

  5. Xiong Q, Cai WJ (2006) Effective transfer function method for decentralized control system design of multi-input multi-output processes. J Process Control 16(8):773–784

    Article  Google Scholar 

  6. Chiu MS, Arkun Y (1992) A methodology for sequential design of robust decentralized control systems. Automatica 28:997–1001

    Article  MathSciNet  MATH  Google Scholar 

  7. Mayne DQ (1973) The design of linear multivariable systems. Automatica 9:201–207

    Article  MATH  Google Scholar 

  8. Shiu SJ, Hwang SH (1998) Sequential design method for multivariable decoupling and multiloop PID controllers. Ind Eng Chem Res 37(1):107–119

    Article  Google Scholar 

  9. Grosdidier P, Morari M (1986) Interaction measures for systems under decentralized control. Automatica 22:309–319

    Article  Google Scholar 

  10. Hovd M, Skogestad S (1993) Improved independent design of robust decentralized controllers. J Process Control 3(1):43–51

  11. Ziegler JG, Nichols NB (1942) Optimum settings for automatic controllers. ASME Trans 64:759–768

    Google Scholar 

  12. Chien IL, Huang HP, Yang JC (1999) A simple multiloop tuning method for PID controllers with no proportional kick. Ind Eng Chem Res 38:1456–1468

    Article  Google Scholar 

  13. Lee J, Edgar TF (2006) Multiloop PI/PID control system improvement via adjusting the dominant pole or peak amplitude ratio. Chem Eng Sci 61:1658–1666

    Article  Google Scholar 

  14. Zhang Y, Wang QG, Astrom KJ (2002) Dominant pole placement for multi-loop control systems. Automatica 38(7):1213–1220

    Article  MathSciNet  MATH  Google Scholar 

  15. Ho WK, Lee TH, Xu W, Zhou JR, Tay EB (2000) The direct Nyquist array design of PID controllers. IEEE Trans Ind Electron 47(1):175–185

    Article  Google Scholar 

  16. Gilbert AF, Yousef A, Natarajan K, Deighton S (2002) Tuning of PI controllers with one-way decoupling in \(2\times 2\) MIMO systems based on finite frequency response data. J Process Control 13(6):553–567

    Article  Google Scholar 

  17. Tavakoli S, Griffin I, Fleming PJ (2006) Tuning of decentralised PI(PID) controllers for TITO processes. Control Eng Pract 14(9):1069–1080

    Article  Google Scholar 

  18. Shen Y, Li S, Li N, Cai WJ (2011) Partial decoupling control for multivariable processes. Ind Eng Chem Res 50(12):7380–7387

    Article  Google Scholar 

  19. Rajapandiyan C, Chidambaram M (2012) Controller design for MIMO processes based on simple decoupled equivalent transfer functions and simplified decoupler. Ind Eng Chem Res 51:12398–12410

    Article  Google Scholar 

  20. Nordfeldt P, Hagglund T (2006) Decoupler and PID controller design of TITO systems. J Process Control 16:923–936

    Article  Google Scholar 

  21. Jevtovic BT, Matausek MR (2010) PID controller design of TITO system based on ideal decoupler. J Process Control 20(7):869–876

    Article  Google Scholar 

  22. Maghade DK, Patre BM (2012) Decentralized PI/PID controllers based on gain and phase margin specifications for TITO processes. ISA Trans 51(4):550–558

    Article  Google Scholar 

  23. Le BN, Wang QG, Lee TH (2014) A graphical approach to computing loop gain margins for tito systems. Trans Inst Meas Control 36(5):600–603

    Article  Google Scholar 

  24. Maghade DK, Patre BM (2014) Pole placement by PID controllers to achieve time domain specifications for TITO systems. Trans Inst Meas Control 36:506–522

    Article  Google Scholar 

  25. Garrido J, Vazquez F, Morilla F (2014) Inverted decoupling internal model control for square stable multivariable time delay systems. J Process Control 24(11):1710–1719

    Article  Google Scholar 

  26. Garrido J, Vazquez F, Morilla F (2013) Centralized inverted decoupling control. Ind Eng Chem Res 52(23):7854–7866

    Article  Google Scholar 

  27. Chen D, Seborg DE (2003) Design of decentralized PI control system based on Nyquist stability analysis. J Process Control 13(1):27–39

    Article  Google Scholar 

  28. Jin QB, Liu Q (2014) Decoupling proportional–integral–derivative controller design for multivariable processes with time delays. Ind Eng Chem Res 53(2):765–777

    Article  Google Scholar 

  29. Sebor DE, Edger TF, Mellichamp DA (2004) Process dynamics and control, 2nd edn. Wiley, New York

    Google Scholar 

  30. Skogestad S, Postletwaite I (1996) Multivariable feedback control: analysis and design, 2nd edn. Wiley, New York

    Google Scholar 

  31. Wood RK, Berry MW (1973) Terminal composition control of a binary distillation column. Chem Eng Sci 28(9):1707–1717

    Article  Google Scholar 

  32. Shen Y, Sun Y, Li S (2012) Adjoint transfer matrix based decoupling control for multivariable processes. Ind Eng Chem Res 51(50):16419–16426

    Article  Google Scholar 

  33. Xiong Q, Cai WJ, He MJ (2007) Equivalent transfer function method for PI/PID controller design of MIMO processes. J Process Control 17:665–673

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Patre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajare, V.D., Patre, B.M., Khandekar, A.A. et al. Decentralized PID controller design for TITO processes with experimental validation. Int. J. Dynam. Control 5, 583–595 (2017). https://doi.org/10.1007/s40435-016-0252-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-016-0252-z

Keywords

Navigation