Skip to main content
Log in

Exergy Performance Optimization of an Irreversible Closed Intercooled Regenerative Brayton Cogeneration Plant

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

An irreversible closed intercooled regenerative Brayton heat and power cogeneration plant model coupled to constant-temperature heat reservoirs is established using finite time thermodynamics. On the basis of exergy analysis, the performance of the plant is investigated and optimized. Analytical formulae about dimensionless exergy output rate and exergy efficiency are deduced. The two cases with fixed and variable total pressure ratio are studied, and the intercooling pressure ratio and the total pressure ratio are optimized. Meanwhile, the influences of the irreversible compression and expansion losses, the effectivenesses of the intercooler, regenerator, and consumer-side heat exchanger and the consumer-side temperature on the dimensionless exergy output rate and corresponding exergy efficiency, the optimal intercooling pressure ratio and the optimal total pressure ratio are analyzed by detailed numerical examples. Then, the optimization is carried out further by searching for the optimal intercooling pressure ratio, optimal total pressure ratio and optimal heat conductance distributions among the hot-, cold- and consumer-side heat exchangers, the regenerator and the intercooler together for the fixed total heat conductance. The characteristics of the optimal heat conductance distributions versus irreversible losses and consumer-side temperature are researched. In the analysis and optimization, it is both found that there exists optimal consumer-side temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C :

Heat capacity rate (kW/K)

E :

Effectiveness of the heat exchanger

e :

Exergy flow rate (kW)

k :

Ratio of the specific heats

N :

Number of heat transfer units

P :

Power output of the plant (kW)

Q :

Rate of heat transfer (kW)

T :

Temperature (K)

U :

Heat conductance (kW/K)

u h :

Hot-side heat conductance distribution

u i :

Heat conductance distribution of the intercooler

u k :

Consumer-side heat conductance distribution

u l :

Cold-side heat conductance distribution

u r :

Heat conductance distribution of the regenerator

x :

Isentropic temperature ratio for low-pressure compressor

y :

Isentropic temperature ratio for total compression process

\({\eta}\) :

Efficiency

\({\pi_1}\) :

Intercooling pressure ratio

\({\pi}\) :

Total pressure ratio

\({\sigma}\) :

Entropy generation rate of the plant (kW/K)

\({\tau_1}\) :

Ratio of the hot-side heat reservoir temperature to environment temperature

\({\tau_2}\) :

Ratio of the cold-side heat reservoir temperature to environment temperature

\({\tau_3}\) :

Ratio of the intercooling fluid temperature to environment temperature

\({\tau_4}\) :

Ratio of the consumer-side temperature to environment temperature

c :

Compressor

ex:

Exergy

H :

Hot-side

I :

Intercooler

in:

Input

K :

Consumer-side

L :

Cold-side

max:

Maximum

max, 2:

Double-maximum

max, 3:

Thrice-maximum

opt:

Optimal

out:

Output

R :

Regenerator

T :

Total

t :

Turbine

wf:

Working fluid

0:

Ambient

\({\begin{array}{l} 1, 2, 2_s, 3, 4, 4_s5, 6, 6_s, 7, 8, 9 \end{array}}\) :

State points of the cycle

−:

Dimensionless

References

  1. Alanne K., Saari A.: Sustainable small-scale CHP technologies for buildings: the basis for multi-perspective decision-making. Rene. Sustain. Energy Rev. 8(5), 401–431 (2004)

    Article  Google Scholar 

  2. Korakianitis T., Grantstrom J., Wassingbo P., Massardo A.F.: Parametric performance of combined-cogeneration power plants with various power and efficiency enhancements. Trans. ASME J. Eng. Gas Turbine Power 127(1), 65–72 (2005)

    Article  Google Scholar 

  3. Sanaye S., Ziabasharhagh M., Ghazinejad M.: Optimal design of gas turbine CHP plant with preheater and HRSG. Int. J. Energy Res. 39(8), 766–777 (2009)

    Article  Google Scholar 

  4. Vieira L.S., Matt C.F., Guedes V.G., Cruz M.G., Castellões F.V.: Maximization of the profit of a complex combined-cycle cogeneration plant using a professional process simulator. Trans. ASME J. Eng. Gas Turbine Power 132(4), 041801(1-10) (2010)

    Google Scholar 

  5. EuroHeat & Power. The International association for district heating, district cooling and combined heat and power. http://www.euroheat.org/Files/Filer/ecoheatcool/index.htm (2010)

  6. Poputoaia D., Bouzarovski S.: Regulating district heating in Romania: legislative challenges and energy efficiency barriers. Energy Policy 38(7), 3820–3829 (2010)

    Article  Google Scholar 

  7. Atmaca M.: Efficiency analysis of combined cogeneration systems with steam and gas turbines. Energy Sources Part A Recovery Util Environ Effects 33(4), 360–369 (2011)

    Article  Google Scholar 

  8. Dumitrascu, G., Feidt, M., Horbaniuc, B.: Comparative analysis of working fluids in solar Joule Brayton cogeneration engines. Termotehnica (1), 49–53 (2011)

  9. Rosen M.A., Le M.N., Dincer I.: Exergetic analysis of cogeneration-based district energy systems. Proc. IMechE Part A: J. Power Energy 218(6), 369–375 (2004)

    Article  Google Scholar 

  10. Ertesvag I.S.: Exergetic comparison of efficiency indicators for combined heat and power (CHP). Energy 32(11), 2038–2050 (2007)

    Article  Google Scholar 

  11. Ferdelji N., Galovic A., Guzovic Z.: Exergy analysis of a co-generation plant. Thermal Sci. 12(4), 75–88 (2008)

    Article  Google Scholar 

  12. Khaliq A.: Exergy analysis of gas turbine trigeneration system for combined production of power heat and refrigeration. Int. J. Refrig. 32(3), 534–545 (2009)

    Article  MathSciNet  Google Scholar 

  13. Reddy B.V., Butcher C.: Second law analysis of a natural gas-fired gas turbine cogeneration system. Int. J. Energy Res. 39(8), 728–736 (2009)

    Article  Google Scholar 

  14. Khaliq A., Choudhary K.: Thermodynamic evaluation of gas turbines for cogeneration applications. Int. J. Exergy 6(1), 15–33 (2009)

    Article  Google Scholar 

  15. Khaliq A., Dincer I.: Energetic and exergetic performance analyses of a combined heat and power plant with absorption inlet cooling and evaporative aftercooling. Energy 36(5), 2662–2670 (2011)

    Article  Google Scholar 

  16. Friedel, W.: Implementing decentralized co-generation: the Frankfurt case study. Energiereferat, Energy planning section, Stadt Frankfurt am Main. http://www.managenergy.net/download/r163.pdf (2010)

  17. Iacobescu F., Badescu V.: Metamorphoses of cogeneration-based district heating in Romania: A case study. Energy Policy 39(1), 269–280 (2011)

    Article  Google Scholar 

  18. Andresen B., Berry R.S., Ondrechen M.J., Salamon P.: Thermodynamics for processes in finite time. Acc. Chem. Res. 17(8), 266–271 (1984)

    Article  Google Scholar 

  19. Bejan A.: Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time process. J. Appl. Phys. 79(3), 1191–1218 (1996)

    Article  Google Scholar 

  20. Hoffmann K.H., Burzler J.M., Schubert S.: Endoreversible thermodynamics. J. Non-Equilib. Thermodyn. 22(4), 311–355 (1997)

    Google Scholar 

  21. Berry R.S., Kazakov V.A., Sieniutycz S., Szwast Z., Tsirlin A.M.: Thermodynamic Optimization of Finite Time Processes. Wiley, Chichester (1999)

    Google Scholar 

  22. Chen L., Wu C., Sun F.: Finite time thermodynamic optimization of entropy generation minimization of energy systems. J. Non-Equilib. Thermodyn. 24(4), 327–359 (1999)

    Article  MATH  Google Scholar 

  23. Sieniutycz S., De Vos A.: Thermodynamics of Energy Conversion and Transport. Springer, New York (2000)

    Book  Google Scholar 

  24. Chen L., Sun F.: Advances in Finite Time Thermodynamics: Analysis and Optimization. Nova Science Publishers, New York (2004)

    Google Scholar 

  25. De Vos A.: Thermodynamics of Solar Energy Conversion. Wiley-Vch, Berlin (2008)

    Google Scholar 

  26. Sieniutycz S., Jezowski J.: Energy Optimization in Process Systems. Elsevier, Oxford (2009)

    Google Scholar 

  27. Feidt M.: Optimal thermodynamics: new upperbounds. Entropy 11(4), 529–547 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Andresen B.: Current trends in finite-time thermodynamics. Angew. Chem. Int. Ed. 50(12), 2690–2704 (2011)

    Article  Google Scholar 

  29. Bojic M.: Cogeneration of power and heat by using endoreversible Carnot engine. Energy Convers. Manag. 38(18), 1877–1880 (1997)

    Article  Google Scholar 

  30. Sahin B., Kodal A., Ekmekci I., Yilmaz T.: Exergy optimization for an endoreversible cogeneration cycle. Energy 22(5), 551–557 (1997)

    Article  Google Scholar 

  31. Kaushik S.C., Chandra H., Khaliq A.: Thermal exergy optimization for an irreversible cogeneration power plant. Int. J. Exergy 2(3), 260–273 (2005)

    Article  Google Scholar 

  32. Erdil A.: Exergy optimization for an irreversible combined cogeneration cycle. J. Energy Inst. 75(1), 27–31 (2005)

    Article  Google Scholar 

  33. Atmaca M., Gumus M., Inan A.T., Yilmaz T.: Optimization of irreversible cogeneration systems under alternative performance criteria. Int. J. Thermophys. 30(5), 1724–1732 (2009)

    Article  Google Scholar 

  34. Ust Y., Sahin B., Kodal A.: Performance optimisation of irreversible cogeneration systems based on a new exergetic performance criterion: exergy density. J. Energy Inst. 82(1), 48–52 (2009)

    Article  Google Scholar 

  35. Yilmaz T.: Performance optimization of a gas turbine-based cogeneration system. J. Phys. D Appl. Phys. 39(11), 2454–2458 (2006)

    Article  Google Scholar 

  36. Hao X., Zhang G.: Maximum useful energy-rate analysis of an endoreversible Joule–Brayton cogeneration cycle. Appl. Energy 84(11), 1092–1101 (2007)

    Article  Google Scholar 

  37. Hao X., Zhang G.: Exergy optimisation of a Brayton cycle-based cogeneration plant. Int. J. Exergy 6(1), 34–48 (2009)

    Article  Google Scholar 

  38. Ust Y., Sahin B., Yilmaz T.: Optimization of a regenerative gas-turbine cogeneration system based on a new exergetic performance criterion: exergetic performance coefficient. Proc. IMechE, Part A: J. Power Energy 221(4), 447–458 (2007)

    Article  Google Scholar 

  39. Ust Y., Sahin B., Kodal A.: Optimization of a dual cycle cogeneration system based on a new exergetic performance criterion. Appl. Energy 84(11), 1079–1091 (2007)

    Article  Google Scholar 

  40. Tsatsaronts G.: Thermoeconomic analysis and optimization of energy systems. Progr. Energy Combus. Sci. 19(3), 227–257 (1993)

    Article  Google Scholar 

  41. El-Sayed M.: The Thermoeconomics of Energy Conversion. Elsevier, London (2003)

    Google Scholar 

  42. Chen, L., Sun, F., Chen, W.: The relation between optimal efficiency and profit rate of a Cannot engine. J. Eng. Therm. Energy Power 6(4), 237–240 (in Chinese) (1991)

  43. Sun, F., Chen, L., Chen, W.: The efficiency and profit holographic spectrum of a two-heat-reservoir heat engine. Trans. Chin. Soc. Intern. Combust. Engines 9(3), 286–287 (in Chinese) (1991)

  44. Chen L., Sun F., Wu C.: Exergoeconomic performance bound and optimization criteria for heat engines. Int. J. Ambient Energy 18(4), 216–218 (1997)

    Article  Google Scholar 

  45. Wu C., Chen L., Sun F.: Effect of heat transfer law on finite time exergoeconomic performance of heat engines. Energy 21(12), 1127–1134 (1996)

    Article  Google Scholar 

  46. Chen, L., Sun, F., Chen, W.: Finite time exergoeconomic performance bound and optimization criteria for two-heat-reservoir refrigerators. Chin. Sci. Bull. 36(2), 156–157 (in Chinese) (1991)

  47. Chen L., Wu C., Sun F.: Effect of heat transfer law on finite time exergoeconomic performance of a Carnot refrigerator. Exergy An Int. J. 1(4), 295–302 (2001)

    Article  Google Scholar 

  48. Wu C., Chen L., Sun F.: Effect of heat transfer law on finite time exergoeconomic performance of a Carnot heat pump. Energy Convers. Manag. 39(7), 579–588 (1998)

    Article  Google Scholar 

  49. Tao G., Chen L., Sun F., Wu C.: Exergoeconomic performance optimization for an endoreversible simple gas turbine closed-cycle cogeneration plant. Int. J. Ambient Energy 30(3), 115–124 (2009)

    Article  Google Scholar 

  50. Tao G., Chen L., Sun F.: Exergoeconomic performance optimization for an endoreversible regenerative gas turbine closed-cycle cogeneration plant. Rev. Mex. Fis. 55(3), 192–200 (2009)

    Google Scholar 

  51. Chen L., Tao G., Sun F.: Finite time exergoeconomic optimal performance for an irreversible gas turbine closed-cycle cogeneration plant. Int. J. Sustain. Energy 31(1), 43–58 (2012)

    Article  Google Scholar 

  52. Chen L., Yang B., Sun F., Wu C.: Exergetic performance optimisation of an endoreversible intercooled regenerated Brayton cogeneration plant. Part 1: thermodynamic model and parametric analysis. Int. J. Ambient Energy 32(3), 116–123 (2011)

    Article  Google Scholar 

  53. Chen L., Yang B., Sun F.: Exergoeconomic performance optimization of an endoreversible intercooled regenerated Brayton cogeneration plant. Part 1: thermodynamic model and parameter analyses. Int. J. Energy Environ. 2(2), 199–210 (2011)

    MathSciNet  Google Scholar 

  54. Yang B., Chen L., Sun F., Wu C.: Exergetic performance optimisation of an endoreversible intercooled regenerated Brayton cogeneration plant. Part 2: exergy output rate and exergy efficiency optimisation. Int. J. Ambient Energy 33(2), 98–104 (2012)

    Article  Google Scholar 

  55. Yang B., Chen L., Sun F.: Exergoeconomic performance optimization of an endoreversible intercooled regenerated Brayton cogeneration plant. Part 2: heat conductance allocation and pressure ratio optimization. Int. J. Energy Environ. 2(2), 211–218 (2011)

    MathSciNet  Google Scholar 

  56. Yang B., Chen L., Sun F.: Exergoeconomic performance analyses of an endoreversible intercooled regenerative Brayton cogeneration type model. Int. J. Sustain. Energy 30(2), 65–81 (2011)

    Article  MathSciNet  Google Scholar 

  57. Yang B., Chen L., Sun F.: Finite time exergoeconomic performance of an irreversible intercooled regenerative Brayton cogeneration plant. J. Energy Inst. 84(1), 5–12 (2011)

    Article  Google Scholar 

  58. Qin J., Zhou W., Bao W., Yu D.: Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet. Int. J. Hydrogen Energy 35(1), 356–364 (2010)

    Article  Google Scholar 

  59. Ahmadi P., Dincer I.: Thermodynamic and exergoenvironmental analyses, and multi-objective optimization of a gas turbine power plant. Appl. Therm. Eng. 31(14-15), 2529–2540 (2011)

    Article  Google Scholar 

  60. Wang W., Chen L., Sun F., Wu C.: Power optimization of an endoreversible intercooled regenerated Brayton cycle. Int. J. Thermal Sci. 44(1), 89–94 (2005)

    Article  Google Scholar 

  61. Wang W., Chen L., Sun F., Wu C.: Optimal heat conductance distribution and optimal intercooling pressure ratio for power optimization of an irreversible closed intercooled regenerated Brayton cycle. J. Energy Inst. 79(2), 116–119 (2006)

    Article  Google Scholar 

  62. Wang W., Chen L., Sun F., Wu C.: Efficiency optimization of an irreversible closed intercooled regenerated gas-turbine cycle. Proc. IMechE Part A J. Power Energy 220(A6), 551–558 (2006)

    Article  Google Scholar 

  63. Chen L., Wang J., Sun F.: Power density optimisation of an endoreversible closed intercooled regenerated Brayton cycle. J. Energy Inst. 80(2), 105–109 (2007)

    Article  Google Scholar 

  64. Chen L., Wang J., Sun F.: Power density analysis and optimization of an irreversible closed intercooled regenerated Brayton cycle. Math. Comput. Model. 48(3/4), 527–540 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Chen, L., Ge, Y. et al. Exergy Performance Optimization of an Irreversible Closed Intercooled Regenerative Brayton Cogeneration Plant. Arab J Sci Eng 39, 6385–6397 (2014). https://doi.org/10.1007/s13369-014-1259-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1259-4

Keywords

Navigation