Skip to main content

Advertisement

Log in

Thermoeconomic Optimization and Performance Analysis of a Regenerative Closed Brayton Cycle with Internal Irreversibilities and Pressure Losses

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Global demand for electricity is growing every year. Gas turbines are indicated to be one of the cleanest options running on fossil fuels to meet this growing demand. Apart from utility power generation, they are dominating the aviation industry and also being used in maritime industry as prime movers because of their characteristic advantages such as high power/weight ratio, wide operational flexibility, ease of maintenance and high reliability. Forecasts show that gas turbines will dominate the US power production industry in the near future. With growing interest on gas turbines, modifications on simple Brayton cycle are becoming more of an issue. Regeneration is one of these modifications which increases thermal efficiency for the same power output and provides less fuel consumption. Accordingly, employing a regenerator decreases fuel and environmental costs. In this paper, thermoeconomic performance optimization of a closed irreversible regenerative Brayton cycle has been carried out. A precise combustion tool based on chemical equilibrium approach has been used for the specification of adiabatic flame temperature which substantially affects environmental costs. For the optimization, the objective function is defined as the net power output divided by the total cost rate which includes the investment cost, fuel cost and environmental cost flow rates. Effects of isentropic and maximum temperature ratios, compressor and turbine isentropic efficiencies, regenerator effectiveness and pressure loss parameter on the thermoeconomic performance of the regenerative Brayton heat engine are investigated. Optimum values for power output, thermal efficiency, investment, fuel and environmental cost rates are specified and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(C_{\text{P}}\) :

Specific heat at constant pressure (kJ kg−1 K−1)

\(C_{\text{V}}\) :

Specific heat at constant volume (kJ kg−1 K−1)

\({\text{CRF}}\) :

Capital recovery factor

\(\dot{C}_{\text{T}}\) :

Total cost rate ($s−1)

\(\dot{C}_{\text{W}}\) :

Thermal capacity rate of the working fluid (kW K−1)

\(c_{\text{env}}\) :

Unit cost of environment ($kJ−1)

\(c_{\text{f}}\) :

Unit cost of fuel ($kJ−1)

\(c_{\text{i}}\) :

Unit cost of investment ($kJ−1)

\(\dot{C}_{\text{env}}\) :

Environmental cost rate ($s−1)

\(\dot{C}_{\text{f}}\) :

Fuel cost rate ($s−1)

\(\dot{C}_{\text{i}}\) :

Investment cost rate ($s−1)

\(F\) :

Objective function (kW h$−1)

F:

Primary air ratio

\(i\) :

Interest rate

\(k\) :

Specific heat ratio

\({\text{LHV}}\) :

Lower heating value (kJ kg−1)

\(\dot{m}\) :

Mass flow rate (kg s−1)

\(n\) :

Equipment lifetime (years)

\(N\) :

Annual number of operation hours

\(\dot{Q}\) :

Heat flow rate (kW)

\(P\) :

Pressure (kPa)

\(T\) :

Temperature (K)

\(\dot{W}\) :

Power output (kW)

\(Z_{i}\) :

Purchase equipment cost

\(\alpha\) :

Maximum temperature ratio

\(\varepsilon\) :

Pressure loss ratio

\(\varepsilon_{R}\) :

Regenerator effectiveness

\(\varphi\) :

Isentropic temperature ratio

\(\eta\) :

Thermal efficiency

\(\zeta\) :

Pressure loss parameter

\(\lambda\) :

Air–fuel ratio

\(\varepsilon_{R}\) :

Regenerator effectiveness

\(\varphi\) :

Isentropic temperature ratio

\(\eta\) :

Thermal efficiency

a:

Air

C:

Compressor

CC:

Combustion chamber

CL:

Cooler

exh:

Exhaust gases

HEX:

Heat exchanger for cooling

f:

Fuel

JB:

Joule-Brayton

in:

Input

max:

Maximum

min:

Minimum

out:

Output

R :

Regenerator

RC :

Regenerator cold-side

RH :

Regenerator hot-side

T :

Turbine

1,2,3,4,5 and 6 :

State points

*:

Maximum F conditions

References

  • Agazzani A, Massardo AF (1997) A tool for thermoeconomic analysis and optimization of gas, steam, and combined plants. J Eng Gas Turb Power 119(4):885–892. doi:10.1115/1.2817069

    Article  Google Scholar 

  • Ahmadi MH, Ahmadi MA, Pourfayaz F (2016) Thermodynamic analysis and evolutionary algorithm based on multi-objective optimization performance of actual power generating thermal cycles. Appl Therm Eng 99:996–1005

    Article  Google Scholar 

  • Ameri M, Mokhtari H, Bahrami M (2016) Energy, exergy, exergoeconomic and environmental (4E) optimization of a large steam power plant: a case study. Iran J Sci Technol Trans Mech Eng 40:11–20

    Article  Google Scholar 

  • Angulo-Brown F (1991) An ecological optimization criterion for finite-time heat engines. J Appl Phys 69(11):7465–7469

    Article  Google Scholar 

  • Avval HB, Ahmadi P, Ghaffarizadeh AR, Saidi MH (2011) Thermo-economic-environmental multiobjective optimization of a gas turbine power plant with preheater using evolutionary algorithm. Int J Energ Res 35(5):389–403

    Article  Google Scholar 

  • Bejan A, Tsatsaronis G, Moran M (1996) Thermal Design and Optimization. John Wiley, New York

    MATH  Google Scholar 

  • Bhargava R, Peretto A (2002) A unique approach for thermoeconomic optimization of an intercooled, reheat, and recuperated gas turbine for cogeneration applications. J Eng Gas Turb Power 124(4):881–891. doi:10.1115/1.1476928

    Article  Google Scholar 

  • Bhargava R, Bianchi M, di Montenegro GN, Peretto A (2002a) Thermo-economic analysis of an intercooled, reheat and recuperated gas turbine for cogeneration applications—Part I: base load operation. J Eng Gas Turb Power 124(1):147–154. doi:10.1115/1.1413463

    Article  Google Scholar 

  • Bhargava R, di Montenegro GN, Peretto A (2002b) Thermoeconomic analysis of an intercooled, reheat, and recuperated gas turbine for cogeneration applications—Part II: part-load operation. J Eng Gas Turb Power 124(4):892–903. doi:10.1115/1.1477195

    Article  Google Scholar 

  • Casella F, Mafezzoni C (2003) Modelling of NOx and CO emissions of a small gas turbine unit based on operational data neural networks. Paper presented at the IFAC Power Plants and Power Systems Control, Seul, Korea

    Google Scholar 

  • Chen LG, Wu C, Sun FR (1999) Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non-Equilib Thermodyn 24(4):327–359. doi:10.1515/Jnetdy.1999.020

    Article  MATH  Google Scholar 

  • Dincer I, Rosen MA (2013) Exergy: energy, environment and sustainable development, 2nd edn. Elsevier, Great Britain

    Google Scholar 

  • Durmayaz A, Sogut OS, Sahin B, Yavuz H (2004) Optimization of thermal systems based on finite-time thermodynamics and thermoeconomics. Prog Energ Combust Sci 30(2):175–217. doi:10.1016/j.pecs.2003.10.003

    Article  Google Scholar 

  • El-Sayed YM, Evans RB (1970) Thermoeconomics and the design of heat systems. J Eng Power 92(1):27–35

    Article  Google Scholar 

  • Evans RB (1980) Thermoeconomic isolation and essergy analysis. Energy 5(8–9):805–821

    Google Scholar 

  • Frangopoulos CA (1994) Application of the thermoeconomic functional approach to the CGAM problem. Energy 19(3):323–342. doi:10.1016/0360-5442(94)90114-7

    Article  Google Scholar 

  • Gaggioli RA, Wepfer WJ (1980) Exergy economics. Energy 5(8–9):823–837. doi:10.1016/0360-5442(80)90099-7

    Article  Google Scholar 

  • Gas Turbine Association (2014) The gas turbine−a climate change solution. http://www.gasturbine.org/images/thegasturbinesolution.pdf

  • Gonca G (2016) Comparative performance analyses of irreversible OMCE (Otto miller cycle engine)-DiMCE (Diesel miller cycle engine)-DMCE (Dual miller cycle engine). Energy 109:152–159

    Article  Google Scholar 

  • Kayadelen HK, Üst Y (2013) Prediction of equilibrium products and thermodynamic properties in H2O injected combustion for CHON type fuels. Fuel 113:389–401

    Article  Google Scholar 

  • Kayadelen HK, Üst Y (2014) Performance and environment as objectives in multi-criterion optimization of steam injected gas turbine cycles. Appl Therm Eng 71:184–196

    Article  Google Scholar 

  • Knight R, Obana M, Wowern C, Mitakakis A, Perz E, Assadi M, Torbidoni L (2006) GTPOM: thermo-economic optimization of whole gas turbine plant. J Eng Gas Turb Power 128(3):535–542. doi:10.1115/1.1850511

    Article  Google Scholar 

  • Kumar R (2016) Thermodynamic modeling and validation of a 210-MW capacity coal-fired power plant. Iran J Sci Technol Trans Mech Eng 40(3):232–242

    Article  Google Scholar 

  • Lazzaretto A, Toffolo A (2004) Energy, economy and environment as objectives in multi-criterion optimization of thermal systems design. Energy 29(8):1139–1157. doi:10.1016/j.energy.2004.02.022

    Article  Google Scholar 

  • Leff HS (1987) Thermal efficiency at maximum work output—new results for old heat engines. Am J Phys 55(7):602–610. doi:10.1119/1.15071

    Article  Google Scholar 

  • Li Y, Liu G, Liu X, Liao S (2016) Thermodynamic multi-objective optimization of a solar-dish Brayton system based on maximum power output, thermal efficiency and ecological performance. Renewable Energ 95:465–473

    Article  Google Scholar 

  • Lozano MA, Valero A (1993) Theory of the exergetic cost. Energy 18(9):939–960. doi:10.1016/0360-5442(93)90006-Y

    Article  Google Scholar 

  • Massardo AF, Scialo M (2000) Thermoeconomic analysis of gas turbine based cycles. J Eng Gas Turb Power 122(4):664–671

    Article  Google Scholar 

  • Rizk NK, Mongia HC (1993) Semianalytical correlations for NOx, CO, and UHC emissions. J Eng Gas Turb Power 115(3):612–619

    Article  Google Scholar 

  • Sadatsakkak SA, Ahmadi MH, Ahmadi MA (2015a) Thermodynamic and thermo-economic analysis and optimization of an irreversible regenerative closed Brayton cycle. Energ Convers Manage 94:124–129

    Article  Google Scholar 

  • Sadatsakkak SA, Ahmadi MH, Bayat R, Pourkiaei SM, Feidt M (2015b) Optimization density power and thermal efficiency of an endoreversible Braysson cycle by using non-dominated sorting genetic algorithm. Energ Convers Manag 93:31–39

    Article  Google Scholar 

  • Seyyedi SM, Ajam H, Farahat S (2011) Thermoenvironomic optimization of gas turbine cycles with air preheat. J Power Energ 225(A1):12–23. doi:10.1177/09576509jpe959

    Article  Google Scholar 

  • Sheykhlou H, Jafarmadar S (2016) Analysis of a combined power and ejector-refrigeration cycle based on solar energy. Iran J Sci Technol Trans Mech Eng 40(1):57–67

    Article  Google Scholar 

  • Sogut OS, Ust Y, Sahin B (2006) The effects of intercooling and regeneration on the thermo-ecological performance analysis of an irreversible-closed Brayton heat engine with variable-temperature thermal reservoirs. J Phys D Appl Phys 39(21):4713–4721. doi:10.1088/0022-3727/39/21/031

    Article  Google Scholar 

  • Tyagi SK, Chen LC, Lin GX, Kaushik SC (2005) Effect of several irreversibilities on the thermo-economic performance of a realistic Brayton heat engine cycle. Indian J Pure Appl Phys 43(8):612–619

    Google Scholar 

  • Ust Y (2005) Ecological performance analysis of energy systems and optimization. Ph.D. Ph.D., Yıldız Technical University, İstanbul

  • Ust Y, Safa A, Sahin B (2005) Ecological performance analysis of an endoreversible regenerative Brayton heat-engine. Appl Energ 80(3):247–260. doi:10.1016/j.apenergy.2004.04.009

    Article  Google Scholar 

  • Ust Y, Gonca G, Kayadelen HK (2011) Determination of optimum reheat pressures for single and double reheat irreversible Rankine cycle. J Energ Inst 84(4):215–219

    Google Scholar 

  • Ust Y, Gonca G, Kayadelen HK (2013) Heat transfer effects on the performance of an air-standard irreversible dual cycle. Int J Veh Des 63(1):102–116

    Article  Google Scholar 

  • Valdes M, Duran MD, Rovira A (2003) Thermoeconomic optimization of combined cycle gas turbine power plants using genetic algorithms. Appl Therm Eng 23(17):2169–2182. doi:10.1016/S1359-4311(03)00203-5

    Article  Google Scholar 

  • Valero A, Lozano MA, Serra L, Tsatsaronis G, Pisa J, Frangopoulos C, Vonspakovsky MR (1994) CGAM problem—definition and conventional solution. Energy 19(3):279–286

    Article  Google Scholar 

  • Yan ZJ (1993) An ecological optimization criterion for finite-time heat engines—comment. J Appl Phys 73(7):3583–3586. doi:10.1063/1.354041

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Yildiz Technical University Institute of Science and Technology for providing opportunity to study on this subject, and this study has been given as a part of PhD. thesis of the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Kayhan Kayadelen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durmusoglu, Y., Ust, Y. & Kayadelen, H.K. Thermoeconomic Optimization and Performance Analysis of a Regenerative Closed Brayton Cycle with Internal Irreversibilities and Pressure Losses. Iran J Sci Technol Trans Mech Eng 41, 61–70 (2017). https://doi.org/10.1007/s40997-016-0043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-016-0043-3

Keywords

Navigation