Skip to main content
Log in

Improvement of Peat Using Portland Cement and Electrokinetic Injection Technique

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Peat is often referred as problematic soil due to its high compressibility, low shear strength, and high water content. However, high surface electrical charge and high cationic exchange capacity of peat makes it a good source for transporting and/or exchange with cations. In this study, a series of batch test is performed to find out the effect of strength improvement of portland cement mixed with the peat. Then, the feasibility of injecting cement electrokinetically into peaty soil environment has been assessed. The microstructure of the treated peat was also investigated by scanning electron microscopy and energy-dispersive X-ray spectrometer analysis. The results showed that the undrained shear strength, pH, and water content of treated peat are affected after electrokinetic treatment. Because of the electrokinetic process, the undrained shear strength was improved to maximum of 308 % and minimum of 30 % in the normalized distance of 0.1 and 0.9 from anode, respectively. The pH was also increased to the maximum of 8 in the normalized distance of 0.1 and 0.9 from the anode. However, the water content was reduced after 7 days of electrokinetic processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kazemian S., Prasad A., Huat B.B.K., Ghiasi V., Ghareh S.: Effects of cement–sodium silicate system grout on tropical organic soils. Arab. J. Sci. Eng. 37(8), 2137–2148 (2012)

    Article  Google Scholar 

  2. Mesri G., Ajlouni M.: Engineering properties of fibrous peats. J. Geotech. Geoenviron. Eng. 133(7), 850–866 (2007)

    Article  Google Scholar 

  3. Yulindasari, I.: Compressibility Characteristics of Fibrous Peat Soil. Department of Civil Engineering, Universiti Teknologi Malaysia, Malaysia (2006)

  4. Hooijer, A.: Tropical peatlands in southeast Asia. In: The Biology of Peatlands, pp 125–134, Oxford University Press, Oxford (2006)

  5. Kazemian S., Huat B.B.K., Mohammed T.A., Abdul Aziz F.N.A., Moayedi H., Barghchi M.: Influence of peat characteristics on cementation and pozzolanic reactions in the dry mixing method. Arab. J. Sci. Eng. 36(7), 1189–1202 (2011)

    Article  Google Scholar 

  6. Kazemian S., Prasad A., Huat B.B.K., Bazaz J.B., Abdul Aziz F.N.A., Mohammad Ali T.A.: Influence of cement: sodium silicate grout admixed with calcium chloride and kaolinite on sapric peat. J. Civil Eng. Manag. 17(3), 309–318 (2011)

    Article  Google Scholar 

  7. Åhnberg H., Johansson S.E., Pihl H., Carlsson T.: Stabilising effects of different binders in some Swedish soils. Gr. Improv. 7(1), 9–23 (2003)

    Article  Google Scholar 

  8. Casagrande, L.: The application of electro-osmosis to practical problems in foundations and earthworks. In: The Application of Electro-Osmosis to Practical Problems in Foundation and Earth Works (1947)

  9. Asavadorndeja P., Glawe U.: Electrokinetic strengthening of soft clay using the anode depolarization method. Bull. Eng. Geol. Environ. 64(3), 237–245 (2005)

    Article  Google Scholar 

  10. Alshawabkeh A.N., Sheahan T.C.: Soft soil stabilization by ionic injection under electric fields. Gr. Improv. 7(4), 177–185 (2003)

    Article  Google Scholar 

  11. Weng C.H., Yuan C.: Removal of Cr(III) from clay soils by electrokinetics. Environ. Geochem. Health 23(3), 281–285 (2001)

    Article  Google Scholar 

  12. Han S.J., Kim S.S., Kim B.I.: Electroosmosis and pore pressure development characteristics in lead contaminated soil during electrokinetic remediation. Geosci. J. 8(1), 85–93 (2004)

    Article  Google Scholar 

  13. Lee M.H., Kamon M., Kim S.S., Lee J.Y., Chung H.I.: Desorption characteristics of Kaolin clay contaminated with zinc from electrokinetic soil processing. Environ. Geochem. Health 29(4), 281–288 (2007)

    Article  Google Scholar 

  14. Lee G., Ro H., Lee S.: Electrokinetically enhanced transport of organic and inorganic phosphorus in a low permeability soil. Geosci. J. 10(1), 85–89 (2006)

    Article  Google Scholar 

  15. Wick L.Y., Shi L., Harms H.: Electro-bioremediation of hydrophobic organic soil-contaminants: a review of fundamental interactions. Electrochim. Acta 52(10), 3441–3448 (2007)

    Article  Google Scholar 

  16. Park J.Y., Chen Y., Chen J., Yang J.W.: Removal of phenanthrene from soil by addidive-enhanced electrokinetics. Geosci. J. 6(1), 1–5 (2002)

    Article  Google Scholar 

  17. Alkan M., Demirbaş O., Dogan M.: Electrokinetic properties of sepiolite suspensions in different electrolyte media. J. Colloid Interface Sci. 281(1), 240–248 (2005)

    Article  Google Scholar 

  18. Alcántara T., Pazos M., Cameselle C., Sanromán M.A.: Electrochemical remediation of phenanthrene from contaminated kaolinite. Environ. Geochem. Health 30(2), 89–94 (2008)

    Article  Google Scholar 

  19. Alshawabkeh A.N., Sheahan T.C., Wu X.: Coupling of electrochemical and mechanical processes in soils under DC fields. Mech. Mater. 36(5–6), 453–465 (2004)

    Article  Google Scholar 

  20. Casagrande L., Loughney R.W., Matich M.A.J.: Electro-osmotic stabilization of a high slope in loose saturated silt. Fifth Int. Conf. Soil Mech. Found. Eng. 2, 555–561 (1961)

    Google Scholar 

  21. Esrig M.L., Gemeinhardt J.P.: Electrokinetic stabilization of an illitic clay. J. Soil Mech. Found. Div 92(3), 109–128 (1967)

    Google Scholar 

  22. Alshawabkeh A.N.: Electrokinetic soil remediation: challenges and opportunities. Sep. Sci. Technol. 44(10), 2171–2187 (2009)

    Article  Google Scholar 

  23. Acar Y.B., Gale R.J., Alshawabkeh A.N., Marks R.E., Puppala S., Bricka M., Parker R.: Electrokinetic remediation: basics and technology status. J. Hazard. Mater. 40(2), 117–137 (1995)

    Article  Google Scholar 

  24. Abdullah W.S., Al-Abadi A.M.: Cationic-electrokinetic improvement of an expansive soil. Appl. Clay Sci. 47(3–4), 343–350 (2010)

    Article  Google Scholar 

  25. Acar. Y.B., Rabbi. M.F., Ozsu. E.E.: Electrokinetic injection of ammonium and sulfate ions into sand and kaolinite beds. J. Geotech. Geoenviron. Eng. 123(3), 239–249 (1997)

    Article  Google Scholar 

  26. Alshawabkeh A.N., Gale R.J., Ozsu-Acar E., Bricka R.M.: Optimization of 2-D electrode configuration for electrokinetic remediation. Soil Sediment Contam. 8(6), 617–635 (1999)

    Article  Google Scholar 

  27. British Standard Institution: Methods of test for soils for civil engineering purposes [S]. in BS 1377: London, UK (1990)

  28. ASTM D-4187: Zeta potential of colloids in water and waste water, in D4187−82American Society for Testing and Materials: West Conshohocken, USA (1985)

  29. Gillman G.P., Sumpter E.A.: Modification to the compulsive exchange method for measuring exchange characteristics of soils. Aust. J. Soil Res. 24(1), 61–66 (1986)

    Article  Google Scholar 

  30. ASTM: Standard test method for pH of soils, in D 4972American Society for Testing and Materials: West Conshohocken, Pa (2007)

  31. Pan L.Y.: Soft soil cement stirring pile reinforcement search in special muck quality range. Build Sci. Res. Sichuan 4, 58–59 (2001)

    Google Scholar 

  32. EuroSoilStab: Design guide, soft soil stabilisation; EuroSoilStab, Development of design and construction methods to stabilise soft organic soils (2002)

  33. Chen H., Wang Q.: The behaviour of organic matter in the process of soft soil stabilization using cement. Bull. Eng. Geol. Environ. 65, 445–448 (2006)

    Article  Google Scholar 

  34. Axelsson, K.; Johansson, S.E.; Anderson, R.: Stabilisation of Organic Soils By Cement and Pozzolanic Reactions: Feasibility Study, pp. 15–16. Swedish Geotechnical Institute, Swedish Deep Stabilisation Research Centre (2000)

  35. Tremblay H., Duchesne J., Locat J., Leroueil S.: Influence of the nature of organic compounds on fine soil stabilization with cement. Can. Geotech. J. 39, 535–546 (2002)

    Article  Google Scholar 

  36. Rogers, C.D.F.; Glendinning, S.: Modification of clay soils using lime. In: Rogers, C.D.F.; Glendinning, S.; Dixon, N. (eds.) Lime Stabilisation. Thomas Telford, New York (1996)

  37. Rogers C.D.F., Glendinning S.: Improvement of clay soils in situ using lime piles in the UK. Eng. Geol. 47(3), 243–257 (1997)

    Article  Google Scholar 

  38. West L.J., Steward D.I., Binley A.M., Shaw B.: Resistivity imaging of soil during electrokinetic transport. Eng. Geol. 53, 205–215 (1999)

    Article  Google Scholar 

  39. Page M.M., Page C.L.: Electroremediation of contaminated soils. J. Environ. Eng. 128(3), 208–219 (2002)

    Article  Google Scholar 

  40. Martin R.M.: Electronic Structure: Basic Theory and Practical Methods. Cambridge Univ Press, London (2004)

    Book  Google Scholar 

  41. Alshawabkeh, A.N.; Bricka, R.M.: Basics and applications of electrokinetic remediation. In: Wise, D.L. et al (eds.) Remediation Engineering of Contaminated Soils, pp. 95–112. CRC Press (2000)

  42. Alshawabkeh A.N., Yeung A.T., Bricka M.R.: Practical aspects of in-situ electrokinetic extraction. J. Environ. Eng. 125(1), 27–35 (1999)

    Article  Google Scholar 

  43. Moayedi H., Kazemian S.: Zeta potentials of suspended humus in multivalent cationic saline solution and its effect on electroosmosis behavoir. J. Dispers. Sci. Technol. 34(2), 283–294 (2012)

    Article  Google Scholar 

  44. Yukselen Y., Kaya A.: Zeta potential of kaolinite in the presence of alkali, alkaline earth, and hydrolyzable metal ions. Water Air Soil Pollut. 145(4), 155–168 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Moayedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moayedi, H., Kassim, K.A., Kazemian, S. et al. Improvement of Peat Using Portland Cement and Electrokinetic Injection Technique. Arab J Sci Eng 39, 6851–6862 (2014). https://doi.org/10.1007/s13369-014-1245-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1245-x

Keywords

Navigation