Skip to main content
Log in

Electroosmosis and pore pressure development characteristics in lead contaminated soil during electrokinetic remediation

  • Published:
Geosciences Journal Aims and scope Submit manuscript

Abstract

Physical and chemical reactions occur during the electrokinetic treatment. When an electric current was applied to soil for some duration, fluid transport phenomena occurred in the soil-water system and the characteristics of soil-water interface varied according to the pH levels due to electrolysis. In addition, reactions occurring within the electrokinetic system are changed according to the inter-reactions of the clay property and electrohydraulic conductivity. In this study, the hydraulic phenomena and the variations of its properties were investigated during the electrokinetic remediation treatment of lead contaminated soil. To do this, laboratory testing on the lead-contaminated soil was performed and the pH distribution, electroosmotic flow, and pore pressure were measured. The zeta potential, with respect to contaminant concentration and pH level, was also investigated through the analysis of the physicochemical relationships. The flow velocity of the electroosmosis was found to be sensitive to the chemical characteristics of the clay and contaminant concentration. As the concentration of lead increased, the flow rate decreased and negative pore pressure occurrs near the cathode due to the differences in flow rates between the electrodes. This negative pore water pressure was proportionate to the flow rate, i.e., a larger flow rate developed a larger negative pore water pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acar, Y.B. and Alshawabkeh, A.N., 1993, Principles of electrokinetic remediation. Environmental Science and Technology, 27, 2638–2647.

    Article  Google Scholar 

  • Acar, Y.B., Alshawabkeh, A.N. and Gale, R.J., 1992, A review of fundamentals of removing contaminants from soils by electrokinetic soil processing. Environmental Geotechnology, Proceedings of the Mediterranean Conference on Environmental Geotechnology, Cesme, Turkey, May 25–27, p. 321–330.

  • Acar, Y.B., Rabbi, M.F. and Ozsu, E.E., 1997, Electrokinetic injection of ammonium and sulfate ions into sand and kaolinite beds. Journal of Geotechnical and Geoenvironmental Engineering, 123, 239–249.

    Article  Google Scholar 

  • Alshawabkeh, A.N. and Acar, Y.B., 1992, Removal of contaminants from soil by electrokinetics: A theoretical treatise. Journal of Environmental Science and Health, A27, 1835–1861.

    Google Scholar 

  • Alshawabkeh, A.N., Yeung, A.T. and Bricka, M.R., 1999, Practical aspects of in situ electrokinetic extraction. Journal of Environmental Engineering, 125, 27–35.

    Article  Google Scholar 

  • Bruell, C., Segal, B. and Walsh, H., 1992, Electro-osmotic removal of gasoline hydrocarbons and TCE from clay. Journal of Environmental Engineering, 118, 68–83.

    Article  Google Scholar 

  • Elektorowicz, M. and Boeva, V., 1996, Electrokinetic supply of nutrients in soil bioremediation. Environmental Technology, 17, 1333–1349.

    Google Scholar 

  • Eykholt, G.R. and Daniel, D.E., 1994, Impact of system chemistry on electroosmosis in contaminated soil. Journal of Geotechnical Engineering, 120, 797–815.

    Article  Google Scholar 

  • Fleureau, J.M. and Kheirbek-Saoud, S., 1996, Depollution of oil contaminated soil by electro injection. Environmental Geotechnics, Proceedings of The Second International Congress on Environmental Geotechnics, Osaka, Japan, February 5–8, p. 999–1004.

  • Hamed, J., Acar, Y.B. and Gale, R.J., 1991, Pb(II) removal from kaolinite by electrokinetics. Journal of Geotechnical Engineering, 117, 240–271.

    Article  Google Scholar 

  • Hunter, R.J., 1981, Zeta potential in colloid science. Academic Press, New York, 386p.

    Google Scholar 

  • Hussain, S.A., 1996, Zeta potential measurements on three clays from Turkey and effects of clays on coal flotation. Journal of Colloid and Interface Science, 184, 535–541.

    Article  Google Scholar 

  • Lageman, R., Pool, W. and Seffinga, G.A., 1989, Electro-reclamation in theory and practice. Forum on Innovative Hazardous Waste Treatment Technologies, U.S. EPA, Report 540/2-89/056, p. 57–76.

  • Mitchell, J.K., 1993, Fundamental of soil behavior. 2nd edition, John Wiley Sons, Inc., New York, p. 340–370.

    Google Scholar 

  • Penn, M., Savvidou, C. and Hellawell, E.E., 1996, Centrifuge modelling of the removal of heavy metal pollutants using electrokinetics. Environmental Geotechnics, Proceedings of The Second International Congress on Environmental Geotechnics, Osaka, Japan February 5–8, p. 1055–1060.

  • Riddick, T.M., 1984, Control of colloid stability through zeta potential, Zeta-Meter Inc., New York, p. 21–24.

    Google Scholar 

  • Rødsand, T. and Acar, Y.B., 1995, Electrokinetic extraction of lead from spiked Norwegian marine clay. Geoenvironment 2000, Geotechnical Special Publications 46, Louisiana, February 24–26, p. 1518–1563.

  • Shang, J.Q., Lo, K.Y. and Quigley, R.M., 1994, Quantitative determination of potential distribution in Stern-Gouy double-layer model. Canadian Geotechnical Journal, 31, 624–636.

    Article  Google Scholar 

  • Shapiro, A.P. and Probstein, R.F., 1993, Removal of contaminants from saturated clay by eletro-osmosis. Environmental Science and Technology, 27, 283–291.

    Article  Google Scholar 

  • Stewart, D.I. and West, L.J., 1996, Electrokinetic soil decontamination-effect of local resistivity variations. Environmental Geotechnics, Proceedings of The Second International Congress on Environmental Geotechnics, Osaka, Japan, February 5–8, p. 1101–1106.

  • Thevanayagam, S. and Rishindran, T., 1998, Injection of nutrient and TEAs in clayey soils using electrokinetics. Journal of Geotechnical and Geoenvironmental Engineering, 124, 330–338.

    Article  Google Scholar 

  • U.S. EPA., 1995, In-situ remediation technology status report, Electrokinetics. U.S. EPA, Report 542/K-94/009, 20 p.

  • Williams, D.J.P. and Williams, K.P., 1978, Electrophoresis and zeta potential of kaolinite. Journal of Colloid and Interface Science 65, 79–87.

    Article  Google Scholar 

  • Yeung, A.T. and Datla, S., 1995, Fundamental formulation of electrokinetic extraction of contaminants from soil. Canadian Geotechnical Journal, 32, 569–583.

    Article  Google Scholar 

  • Yeung, A.T., Hsu, C.H. and Menon, R.M., 1996, EDTA-enhanced electrokinetic extraction of lead. Journal of Geotechnical Engineering, 122, 666–673.

    Article  Google Scholar 

  • Yeung, A.T. and Mitchell, J.K., 1993, Coupled fluid, electrical and chemical flows in soil. Geotechnique, 43, 121–134.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Jae Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, SJ., Kim, SS. & Kim, BI. Electroosmosis and pore pressure development characteristics in lead contaminated soil during electrokinetic remediation. Geosci J 8, 85–93 (2004). https://doi.org/10.1007/BF02910281

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02910281

Key words

Navigation