Skip to main content
Log in

Electrokinetic strengthening of soft clay using the anode depolarization method

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Electrokinetic stabilization is an innovative and cost effective ground improvement method for soft soils. With this method, stabilizing agents are electrically injected into the soils to achieve stabilization by means of ion exchange, precipitation or mineralization. The method is not yet widely accepted for common application as it improves the strength of soils only within a limited area. When coupled with a depolarization technique, the quality of the soil improvement is enhanced. Calcium ions are electrically injected into soils to replace monovalent ions while hydrogen ions, generated from electrolysis at the anode, are prevented from migrating into soils by continuous depolarization at the anode reservoir. However, hydroxide ions, generated at the cathode, are able to migrate into the soils. The injected calcium ions and hydroxide ions react with the dissolved silicates and aluminates in the clay to form cementing agents—calcium silicates and/or aluminum hydrates. Increases in strength of up to 170% immediately after treatment and up to 570% after a 7-day curing were measured. These results demonstrate that this simple technique could significantly improve the quality of electrokinetic stabilization in soft soils.

Résumé

La stabilisation électrocinétique est une méthode innovante et économique d’amélioration des sols mous. Par cette méthode, des agents chimiques sont injectés électriquement dans le sol pour obtenir une stabilisation grâce à des processus d’échanges ioniques, de précipitation et de minéralisation. La méthode n’est pas encore largement appliquée dans la mesure où l’amélioration de la résistance du sol ne se réalise que dans une zone limitée. Les ions calcium sont électriquement injectés dans le sol et remplacent des ions monovalents, tandis que les ions hydrogène, résultant de l’électrolyse et produits à l’anode, ne peuvent migrer dans le sol du fait de la dépolarisation continue à l’anode. Cependant, les ions hydroxyde, produits à la cathode, peuvent migrer dans le sol. Les ions calcium injectés et les ions hydroxyde réagissent avec les silicates et aluminates dissous, provenant des argiles, pour former des agents de cimentation – des silicates de calcium et/ou des hydrates d’aluminium. Des augmentations de résistance jusqu’à 170% immédiatement après le traitement et jusqu’à 570% après un traitement de 7 jours ont été mesurées. Ces résultats démontrent que cette technique simple pourrait améliorer de façon significative la qualité de la stabilisation électrocinétique des sols mous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Acar YB, Hamed J, Alshawabkeh A, Gale R (1994) Cd(II) Removal from saturated kaolinite by application of electrical current. Gèotechnique 44:239–254

    Google Scholar 

  • Alshawabkeh AN, Sheahan TC (2003) Soft soil stabilisation by ionic injection under electric fields. Ground Improv 7:177–185

    Article  Google Scholar 

  • Assarson K, Broms B, Granholm S, Paus K (1971) Deep stabilization of soft cohesive soils. Linden Alimark, Sweden, p 20

    Google Scholar 

  • Baker JE, Rogers CDF, Boardman DI, Peterson (2004) Electrokinetic stabilization: an overview and case study. Ground Improv 8:47–58

    Article  Google Scholar 

  • Bergado DT, Lorenzo GA, Balasubramaniam AS (2000) A comparison of engineering behavior of cement treated and lime treated soft Bangkok Clay. In: Proceedings of the 12th Asian regional conference on soil mechanics and geotechnical engineering, vol 1, pp 449–452

  • Diamond S, Kinter EB (1965) Mechanisms of soil-lime stabilization—an interpretative review. Highway Res Rec 92:83–102

    Google Scholar 

  • Esrig MI, Gemeinhardt JP (1967) Electrokinetic stabilization of an illitic clay. J Soil Mech Found Eng Div ASCE 93:109–128

    Google Scholar 

  • Eykholt GR (1997) Development of pore pressures by nonuniform electroosmosis in clays. J Hazard Mater 55:171–186

    Article  Google Scholar 

  • Eykholt GR, Daniel DE (1994) Impact of system chemistry on electroosmosis in contaminated soil. J Geotech Eng ASCE 120:797–815

    Article  Google Scholar 

  • Gray DH (1970) Electrochemical hardening of clay soils. Géotechnique 20:81–93

    Article  Google Scholar 

  • Hamed JT, Bhadra A (1997) Influence of current density and pH on electrokinetics. J Hazard Mater 55:279–294

    Article  Google Scholar 

  • Kamruzzaman AHM (1998) Chemical stabilization of Bangkok Clay: addition of salts and other additives. Asian Institute of Technology, Bangkok, p 34

    Google Scholar 

  • Mohamedelhassan E, Shang JQ (2002) Effect of electrode materials and current intermittence in electro-osmosis. Ground Improv 5:3–11

    Article  Google Scholar 

  • Ozkan S, Gale RJ, Seals RK (1999) Electrokinetic stabilization of kaolinite by injection of Al and PO 3−4 ions. Ground Improv 3:135–144

    Google Scholar 

  • Page MM, Page CL (2002) Electroremediation of contaminated soils. J Environ Eng ASCE 128:208–219

    Article  Google Scholar 

  • Segall BA, Bruell CJ (1992) Electroosmotic contaminant-removal processes. J Environ Eng ASCE 118:84–100

    Article  Google Scholar 

  • Wada S-I, Umegeki Y (2001) Major ion and electrical potential distribution in soil under electrokinetic remediation. Environ Sci Technol 35:2151–2155

    Article  PubMed  Google Scholar 

  • West LJ, Steward DI, Binley AM, Shaw B (1999) Resistivity imaging of soil during electrokinetic transport. Eng Geol 53:205–215

    Article  Google Scholar 

  • Yeung AT, Sade SM, Mitchell JK (1992) A new apparatus for the evaluation of electro-kinetic processes in hazardous waste management. Geotech Test J 15:207–216

    Article  Google Scholar 

  • Yeung AT, Scott TB, Gopinath S, Menon RM, Hsu C-N (1997) Design, fabrication, and assembly of and apparatus for electrokinetic remediation studies. Geotech Test J 20:199–210

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornpong Asavadorndeja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asavadorndeja, P., Glawe, U. Electrokinetic strengthening of soft clay using the anode depolarization method. Bull Eng Geol Environ 64, 237–245 (2005). https://doi.org/10.1007/s10064-005-0276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-005-0276-7

Keywords

Mots clés

Navigation