Skip to main content
Log in

High temperature extensional rheology of commercially available polycarbonate mixed with flame retardant salts

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

In this paper, we present a study of the dripping properties of polycarbonate (PC) modified with combinations of earth metal salts of inorganic sulfur, potassium perfluorobutane sulfonate (Rimar); non-halogenated flame retardant additives, potassium diphenyl sulfone-3-Sulfonate (KSS); and block co-polymers-polytetrafluoroethylene encapsulated with styrene acrylonitrile resin (T-SAN). Measurements of the extensional rheology of polycarbonate with different concentration of each flame retardant additive were performed using a custom-built high temperature Capillary Breakup Extensional Rheometer (CaBER) at temperatures up to T=400°C. From these measurements, the evolution of the apparent transient extensional viscosity was monitored as a function of time and strain both in air and in an inert nitrogen environment. The evolution of extensional viscosity has been shown to be an excellent tool for predicting the dripping behavior of polymers exposed to heat and a valuable tool for understanding the mechanism of polymer degradation which is typically dominated by either crosslinking or charring. We show that extensional rheology measurements are significantly more sensitive to temperature-induced changes to the polymer microstructure than shear rheology measurements. We have also performed systematic concentration of specific flame retardant salts and through variation in extensional rheology and investigated the optimum concentration required to achieve a V0 rating. Finally, we will show that extensional rheology is a powerful method for predicting the effect of flame retardant modifiers and optimizing their use in new flame resistant materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anna, S.L. and G.H. McKinley, 2001, Elasto-capillary thinning and breakup of model elastic liquids, J. Rheol.45, 115–138.

    Article  CAS  Google Scholar 

  • Ban, D.M., Y.Z. Wang, B. Yang, and G.M. Zhao, 2004, A novel non-dripping oligomeric flame retardant for polyethylene terephthalate, Eur. Polym. J.40, 1909–1913.

    Article  CAS  Google Scholar 

  • Bazilevsky, A.V., V.M. Entov, and A.N. Rozhkov, 1990, Liquid filament microrheometer and some of its applications, In: Oliver, D.R., eds., Third European Rheology Conference and Golden Jubilee Meeting of the British Society of Rheology, Elsevier, New York, 41–43.

    Chapter  Google Scholar 

  • Beyler, C.L. and M.M. Hirschler, 2002, Thermal decomposition of polymers, In: DiNenno, P.J., eds., SFPE Handbook of Fire Protection Engineering, 3rd ed., National Fire Protection Association, Quincy, Section 1, Chapter 7, 1–110.

    Google Scholar 

  • Clasen, C., J.P. Plog, W.M. Kulicke, M. Owens, C. Macosko, L.E. Scriven, M. Verani, and G.H. McKinley, 2006, How dilute are dilute solutions in extensional flows?, J. Rheol.50, 849–881.

    Article  CAS  Google Scholar 

  • Entov, V.M. and E.J. Hinch, 1997, Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid, J. Non-Newton. Fluid Mech.72, 31–53.

    Article  CAS  Google Scholar 

  • Horrocks, A., B.K. Kandola, P. Davies, S. Zhang, and S. Padbury, 2005, Developments in flame retardant textiles—a review, Polym. Degrad. Stabil.88, 3–12.

    Article  CAS  Google Scholar 

  • Hu, Z., L. Chen, G.P. Lin, Y. Luo, and Y.Z. Wang, 2011, Flame retardation of glass-fibre-reinforced polyamide 6 by a novel metal salt of alkylphosphinic acid, Polym. Degrad. Stabil.96, 1538–1545.

    Article  CAS  Google Scholar 

  • Huang, X., X. Ouyang, F. Ning, and J. Wang, 2006, Mechanistic study on flame retardance of polycarbonate with a small amount of potassium perfluorobutane sulfonate by TGA-FTIR/XPS, Polym. Degrad. Stabil.91, 606–613.

    Article  CAS  Google Scholar 

  • Jang, B.N. and C.A. Wilkie, 2005, The thermal degradation of bisphenol A polycarbonate in air, Thermochim. Acta426, 73–84.

    Article  CAS  Google Scholar 

  • Jenewein, E., B. Nass, and W. Wanzke, 2003, Synergistic flame retardant combination of salts of 1-hydroxy-dihydrophosphole oxides and/or 1-hydroxyphospholane oxides and nitrogen compounds for use in polymers, US Patent US6509401B1.

  • Kandola, B., D. Price, G. Milnes, and A. Da Silva, 2013, Development of a novel experimental technique for quantitative study of melt dripping of themoplastic polymers, Polym. Degrad. Stabil.98, 52–63.

    Article  CAS  Google Scholar 

  • Kandola, B., M. Ndiaye, and D. Price, 2014, Quantification of polymer degradation during melt dripping of thermoplastic polymers, Polym. Degrad. Stabil.106, 16–25.

    Article  CAS  Google Scholar 

  • Kojic, N., J. Bico, C. Clasen, and G.H. McKinley, 2006, Ex vivo rheology of spider silk, J. Exp. Biol.209, 4355–4362.

    Article  CAS  Google Scholar 

  • Laoutid, F., L. Bonnaud, M. Alexandre, J.M. Lopez-Cuesta, and P. Dubois, 2009, New prospects in flame retardant polymer materials: from fundamentals to nanocomposites, Mater. Sci. Eng. R-Rep.63, 100–125.

    Article  Google Scholar 

  • Lee, L.H., 1964, Mechanisms of thermal degradation of phenolic condensation polymers. I. Studies on the thermal stability of polycarbonate, J. Polym. Sci. Pol. Chem.2, 2859–2873.

    Google Scholar 

  • Levchik, S.V. and E.D. Weil, 2005, Overview of recent developments in the flame retardancy of polycarbonates, Polym. Int.54, 981–998.

    Article  CAS  Google Scholar 

  • Li, X.G. and M.R. Huang, 1999, Thermal degradation of bisphenol A polycarbonate by high-resolution thermogravimetry, Polym. Int.48, 387–391.

    Article  CAS  Google Scholar 

  • Liu, S., H. Ye, Y. Zhou, J. He, Z. Jiang, J. Zhao, and X. Huang, 2006, Study on flame-retardant mechanism of polycarbonate containing sulfonate-silsesquioxane-fluoro retardants by TGA and FTIR, Polym. Degrad. Stabil.91, 1808–1814.

    Article  CAS  Google Scholar 

  • Lu, S.Y. and I. Hamerton, 2002, Recent developments in the chemistry of halogen-free flame retardant polymers, Prog. Polym. Sci.27, 1661–1712.

    Article  CAS  Google Scholar 

  • Matzen, M., B. Kandola, C. Huth, and B. Schartel, 2015, Influence of flame retardants on the melt dripping behaviour of thermoplastic polymers, Materials8, 5621–5646.

    Article  CAS  Google Scholar 

  • McKinley, G.H. and A. Tripathi, 2000, How to extract the Newtonian viscosity from capilary breakup measurements in a filament rheometer, J. Rheol.44, 653–670.

    Article  CAS  Google Scholar 

  • McKinley, G.H. and T. Sridhar, 2002, Filament stretching rheometry, Annu. Rev. Fluid Mech.34, 375–415.

    Article  Google Scholar 

  • Odochian, L., C. Moldoveanu, and G. Carja, 2013, Contributions to the thermal degradation mechanism under air atmosphere of PTFE by TG-FTIR analysis: Influence of the additive nature, Thermochim. Acta558, 22–28.

    Article  CAS  Google Scholar 

  • Odochian, L., C. Moldoveanu, A.M. Mocanu, and G. Carja, 2011, Contributions to the thermal degradation mechanism under nitrogen atmosphere of PTFE by TG-FTIR analysis. Influence of the additive nature, Thermochim. Acta526, 205–212.

    Article  CAS  Google Scholar 

  • Papageorgiou, D.T., 1995, On the breakup of viscous liquid threads, Phys. Fluids7, 1529–1544.

    Article  CAS  Google Scholar 

  • Pawlowski, K.H. and B. Schartel, 2007, Flame retardancy mechanisms of triphenyl phosphate, resorcinol bis(diphenyl phosphate) and bisphenol A bis(diphenyl phosphate) in polycarbonate/acrylonitrile-butadiene-styrene blends, Polym. Int.56, 1404–1414.

    Article  CAS  Google Scholar 

  • Plog, J.P., W.M. Kulicke, and C. Clasen, 2005, Influence of the molar mass distribution on the elongational behaviour of polymer solutions in capillary breakup, Appl. Rheol.15, 28–37.

    Article  CAS  Google Scholar 

  • Rodd, L.E., T.P. Scott, J.J. Cooper-White, and G.H. McKinley, 2005, Capillary break-up rheometry of low-viscosity elastic fluids, Appl. Rheol.15, 12–27.

    Article  CAS  Google Scholar 

  • Rosello, M., S. Sur, B. Barbet, and J.P. Rothstein, 2019, Dripping-onto-substrate capillary breakup extensional rheometry of low-viscosity printing inks, J. Non-Newton. Fluid Mech.266, 160–170.

    Article  CAS  Google Scholar 

  • Stelter, M., G. Brenn, A.L. Yarin, R.P. Singh, and F. Durst, 2000, Validation and application of a novel elongational device for polymer solutions, J. Rheol.44, 595–616.

    Article  CAS  Google Scholar 

  • Sur, S. and J. Rothstein, 2018, Drop breakup dynamics of dilute polymer solutions: Effect of molecular weight, concentration, and viscosity, J. Rheol.62, 1245–1259.

    Article  CAS  Google Scholar 

  • Sur, S., M. Chellamuthu, and J. Rothstein, 2019, High-temperature extensional rheology of linear, branched, and hyper-branched polycarbonates, Rheol. Acta58, 557–572.

    Article  CAS  Google Scholar 

  • Wang, Y. and J. Zhang, 2013, Thermal stabilities of drops of burning thermoplastics under the UL 94 vertical test conditions, J. Hazard. Mater.246, 103–109.

    Google Scholar 

  • Wu, N., C. Ding, and R. Yang, 2010, Effects of zinc and nickel salts in intumescent flame-retardant polypropylene, Polym. Degrad. Stabil.95, 2589–2595.

    Article  CAS  Google Scholar 

  • Yesilata, B., C. Clasen, and G.H. McKinley, 2006, Nonlinear shear and extensional flow dynamics of wormlike surfactant solutions, J. Non-Newton. Fluid Mech.133, 73–90.

    Article  CAS  Google Scholar 

  • Zhang, J., M. Lewin, E. Pearce, M. Zammarano, and J.W. Gilman, 2008, Flame retarding polyamide 6 with melamine cyanurate and layered silicates, Polym. Adv. Technol.19, 928–936.

    Article  CAS  Google Scholar 

  • Zhang, Y., Y.P. Ni, M.X. He, X.L. Wang, L. Chen, and Y.Z. Wang, 2015, Phosphorus-containing copolyesters: The effect of ionic group and its analogous phosphorus heterocycles on their flame-retardant and anti-dripping performances, Polymer60, 50–61.

    Article  CAS  Google Scholar 

  • Zhou, W., H. Yang, and C. Fang, 2007, Thermal degradation of polycarbonate, Chem. Ind. Eng. Prog.26, 23.

    CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Sabic for funding this research. Additionally, the authors would like to thank Christian Clasen of KU Leuven for use of his Edgehog software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Rothstein.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sur, S., Chellamuthu, M. & Rothstein, J. High temperature extensional rheology of commercially available polycarbonate mixed with flame retardant salts. Korea-Aust. Rheol. J. 32, 47–59 (2020). https://doi.org/10.1007/s13367-020-0006-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-020-0006-5

Keywords

Navigation