Skip to main content
Log in

Mechanical, Tensile Creep and Viscoelastic Properties of Thermoplastic Polyurethane/Polycarbonate Blends

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This study investigated the morphological, mechanical and solid-state creep properties of thermoplastic polyurethane/polycarbonate blends. Blend film samples were prepared via the solution-mixing method. The morphological and mechanical properties of the samples were investigated by scanning electron microscope (SEM) and universal test machine. Solid-state creep tests were also performed by dynamic mechanic analyzer (DMA) under a stress value of 3 MPa at different temperatures (30, 40, and 50 °C). Morphological observations indicated that the blend samples had a compatible structure due to the polar nature of PC and TPU. In the mechanical tests, it was found that the tensile modulus value improved significantly by incorporation of PC, whereas the strain at break and toughness values reduced. Accordingly, the blend sample that contained PC at the rate of 10 % (wt.) showed a higher tensile modulus and lower toughness than neat TPU by 2.85 and 0.56 times, respectively. In the creep strain analyses, the viscoelastic structure and long-term creep performance of the samples were analyzed by the Burger model, time-temperature superposition (TTS) approach and Findley model. The experimental values and the model predictions indicated that incorporation of PC into the TPU phase improved the creep resistance of TPU significantly. For example, the creep strain value of neat TPU could be reduced by 68 % and 98 % in the respective cases of the PC concentrations of 10 % (wt.) and 50 % (wt.). Finally, the experimental creep-recovery behavior of the samples was investigated, and the permanent strain values were determined by the Weibull Distribution Function (WDF).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Drobny, “Handbook of Thermoplastic Elastomers”, Elsevier, 2014.

  2. A. Eceiza, M. Martin, K. De La Caba, G. Kortaberria, N. Gabilondo, M. Corcuera, and I. Mondragon, Polym. Eng. Sci., 48, 297 (2008).

    Article  CAS  Google Scholar 

  3. H. Tanaka and M. Kunimura, Polym. Eng. Sci., 42, 1333 (2002).

    Article  CAS  Google Scholar 

  4. D. A. Nguyen, Y. R. Lee, A. V. Raghu, H. M. Jeong, C. M. Shin, and B. K. Kim, Polym. Int., 58, 412 (2009).

    Article  CAS  Google Scholar 

  5. J. Fallon, B. Kolb, C. Herwig, E. Foster, and M. Bortner, J. Appl. Polym. Sci., 136, 46992 (2019).

    Article  Google Scholar 

  6. N. Ercan, A. Durmus, and A. Kaşgöz, J. Thermoplast. Compos. Mater., 30, 950 (2017).

    Article  CAS  Google Scholar 

  7. G. Kumar, N. Neelakantan, and N. Subramanian, Polym.-Plast. Technol. Eng., 32, 33 (1993).

    Article  CAS  Google Scholar 

  8. E. G. Bajsić and V. Rek, e-Polymers, 4, 073 (2004).

    Article  Google Scholar 

  9. Y. Jia, Z. Jiang, X. Gong, and Z. Zhang, Express Polym. Lett., 6, 750 (2012).

    Article  CAS  Google Scholar 

  10. D. Yuan, D. Pedrazzoli, G. Pircheraghi, and I. Manas-Zloczower, Polym.-Plast. Technol. Eng., 56, 732 (2017).

    Article  CAS  Google Scholar 

  11. W. Li, J. Liu, C. Hao, K. Jiang, D. Xu, and D. Wang, Polym. Eng. Sci., 48, 249 (2008).

    Article  CAS  Google Scholar 

  12. Y. Sung, C. Kum, H. Lee, N. Byon, H. G. Yoon, and W. N. Kim, Polymer, 46, 5656 (2005).

    Article  CAS  Google Scholar 

  13. A. Kasgoz, D. Akın, A. I. Ayten, and A. Durmus, Compos. Part B-Eng., 66, 126 (2014).

    Article  CAS  Google Scholar 

  14. L. W. McKeen, “The Effect of Creep and other Time Related Factors on Plastics and Elastomers”, Elsevier, 2009.

  15. A. Kasgoz, M. Tamer, C. Kocyigit, and A. Durmus, J. Appl. Polym. Sci., 135, 46350 (2018).

    Article  Google Scholar 

  16. Y. Jia, K. Peng, X.-L. Gong, and Z. Zhang, Int. J. Plast., 27, 1239 (2011).

    Article  CAS  Google Scholar 

  17. A. Shokuhfar, A. Zare-Shahabadi, A.-A. Atai, S. Ebrahimi-Nejad, and M. Termeh, Polym. Test., 31, 345 (2012).

    Article  CAS  Google Scholar 

  18. J.-L. Yang, Z. Zhang, A. K. Schlarb, and K. Friedrich, Polymer, 47, 6745 (2006).

    Article  CAS  Google Scholar 

  19. I. M. Ward and J. Sweeney, “Mechanical Properties of Solid Polymers”, John Wiley & Sons, 2012.

  20. W. N. Findley and F. A. Davis, “Creep and Relaxation of Nonlinear Viscoelastic Materials”, Courier Corporation, 2013.

  21. V. Yannas and A. C. Lunn, J. Macromol. Sci. Part B, 4, 603 (1970).

    Article  CAS  Google Scholar 

  22. A. Kasgoz, D. Akın, and A. Durmus, Macromol. Mater. Eng., 301, 1402 (2016).

    Article  CAS  Google Scholar 

  23. K. S. Fancey, J. Polym. Eng., 21, 489 (2001).

    Article  CAS  Google Scholar 

  24. L. Vas and P. Bakonyi, Express Polym. Lett., 6, 987 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Kasgoz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasgoz, A. Mechanical, Tensile Creep and Viscoelastic Properties of Thermoplastic Polyurethane/Polycarbonate Blends. Fibers Polym 22, 295–305 (2021). https://doi.org/10.1007/s12221-021-0113-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0113-z

Keywords

Navigation