Skip to main content
Log in

First-harmonic intrinsic nonlinearity of model polymer solutions in medium amplitude oscillatory shear (MAOS)

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

First-harmonic MAOS moduli were demonstrated experimentally using monodisperse linear polystyrene (PS) solutions at different concentrations. Two first-harmonic intrinsic nonlinearities are asymptotic deviations from two linear viscoelastic moduli and obtained in medium amplitude oscillatory shear (MAOS) regime. Master curves of first-harmonic MAOS moduli for PS solutions provided novel information which has never been reported before. The interrelationship between first-harmonic and third-harmonic MAOS moduli was evaluated at low and high De. At the low-De limit, all solutions followed the universal interrelation predicted by fourth-order fluid expansion. At the high-De limit, where no universal interrelation exists, the average first-harmonic to third-harmonic elastic MAOS moduli ratio was −22.26, and for viscous counterparts, the magnitude and sign of this ratio changed on increasing frequency. Unentangled and entangled solutions were distinguished using normalized viscous moduli at De > 1. Viscous MAOS moduli normalized by SAOS complex modulus displayed a plateau for unentangled solutions and a decreasing behavior for entangled solutions. First-harmonic MAOS moduli of entangled solutions agreed well with multimode molecular stress function (MSF) predictions under the all relaxation mode assumption, which contrasted with third-harmonic MAOS predictions using the terminal relaxation mode assumption. It is expected that the first-harmonic MAOS results in this paper will be good reference information for future MAOS studies and computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi, M., N.G. Ebrahimi, and M. Wilhelm, 2013, Investigation of the rheological behavior of industrial tubular and autoclave LDPEs under SAOS, LAOS, transient shear, and elongational flows compared with predictions from the MSF theory, J. Rheol. 57, 1693–1714.

    Article  Google Scholar 

  • Bharadwaj, N.A., K.S. Schweizer, and R.H. Ewoldt, 2017, A strain stiffening theory for transient polymer networks under asymptotically nonlinear oscillatory shear, J. Rheol. 61, 643–665.

    Article  Google Scholar 

  • Bharadwaj, N.A. and R.H. Ewoldt, 2014, The general low-frequency prediction for asymptotically nonlinear material functions in oscillatory shear, J. Rheol. 58, 891–910.

    Article  Google Scholar 

  • Bharadwaj, N.A. and R.H. Ewoldt, 2015, Single-point parallel disk correction for asymptotically nonlinear oscillatory shear, Rheol. Acta 54, 223–233.

    Article  Google Scholar 

  • Bird, R.B., A.J. Giacomin, A.M. Schmalzer, and C. Aumnate, 2014, Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response, J. Chem. Phys. 140, 074904.

    Article  Google Scholar 

  • Carey-De La Torre, O. and R.H. Ewoldt, 2018, First-harmonic nonlinearities can predict unseen third-harmonics in mediumamplitude oscillatory shear (MAOS), Korea-Aust. Rheol. J. 30, 1–10.

    Article  Google Scholar 

  • Cho, K.S., K. Hyun, K.H. Ahn, and S.J. Lee, 2005, A geometrical interpretation of large amplitude oscillatory shear response, J. Rheol. 49, 747–758.

    Article  Google Scholar 

  • Cziep, M.A., M. Abbasi, M. Heck, L. Arens, and M. Wilhelm, 2016, Effect of molecular weight, polydispersity, and monomer of linear homopolymer melts on the intrinsic mechanical nonlinearity 3Q0(ω) in MAOS, Macromolecules 49, 3566–3579.

    Article  Google Scholar 

  • Davis, W.M. and C.W. Macosko, 1978, Nonlinear dynamic mechanical moduli for polycarbonate and PMMA, J. Rheol. 22, 53–71.

    Article  Google Scholar 

  • Ewoldt, R.H., A.E. Hosoi, and G.H. McKinley, 2008, New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear, J. Rheol. 52, 1427–1458.

    Article  Google Scholar 

  • Ewoldt, R.H. and N.A. Bharadwaj, 2013, Low-dimensional intrinsic material functions for nonlinear viscoelasticity, Rheol. Acta 52, 201–219.

    Article  Google Scholar 

  • Ferry, J.D., 1980, Viscoelastic Properties of Polymers, John Wiley & Sons, New York.

    Google Scholar 

  • Ganeriwala, S.N. and C.A. Rotz, 1987, Fourier transform mechanical analysis for determining the nonlinear viscoelastic properties of polymers, Polym. Eng. Sci. 27, 165–178.

    Article  Google Scholar 

  • Giacomin, A.J. and J.M. Dealy, 1993, Large-amplitude oscillatory shear, In: Collyer, A.A., eds., Techniques in Rheological Measurement, Springer, Dordrecht, 99–121.

    Book  Google Scholar 

  • Giacomin, A.J., R.B. Bird, L.M. Johnson, and A.W. Mix, 2011, Large-amplitude oscillatory shear flow from the corotational Maxwell model, J. Non-Newton. Fluid Mech. 166, 1081–1099.

    Article  Google Scholar 

  • Gurnon, A.K. and N.J. Wagner, 2012, Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles, J. Rheol. 56, 333–351.

    Article  Google Scholar 

  • Hyun, K., E.S. Baik, K.H. Ahn, S.J. Lee, M. Sugimoto, and K. Koyama, 2007, Fourier-transform rheology under medium amplitude oscillatory shear for linear and branched polymer melts, J. Rheol. 51, 1319–1342.

    Article  Google Scholar 

  • Hyun, K. and M. Wilhelm, 2009, Establishing a new mechanical nonlinear coefficient Q from FT-rheology: First investigation of entangled linear and comb polymer model systems, Macromolecules 42, 411–422.

    Article  Google Scholar 

  • Hyun, K. and M. Wilhelm, 2018, Nonlinear oscillatory shear mechanical responses, In: Richert, R., eds., Nonlinear Dielectric Spectroscopy, Springer International Publishing, Cham, 321–368.

    Book  Google Scholar 

  • Hyun, K., M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt, and G.H. McKinley, 2011, A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS), Prog. Polym. Sci. 36, 1697–1753.

    Article  Google Scholar 

  • Hyun, K., S.H. Kim, K.H. Ahn, and S.J. Lee, 2002, Large amplitude oscillatory shear as a way to classify the complex fluids, J. Non-Newton. Fluid Mech. 107, 51–65.

    Article  Google Scholar 

  • Kempf, M., D. Ahirwal, M. Cziep, and M. Wilhelm, 2013, Synthesis and linear and nonlinear melt rheology of well-defined comb architectures of PS and PpMS with a low and controlled degree of long-chain branching, Macromolecules 46, 4978–4994.

    Article  Google Scholar 

  • Kim, S.H., H.G. Sim, K.H. Ahn, and S.J. Lee, 2002, Large amplitude oscillatory shear behavior of the network model for associating polymeric systems, Korea-Aust. Rheol. J. 14, 49–55.

    Google Scholar 

  • Kumar, M.A., R.H. Ewoldt, and C.F. Zukoski, 2016, Intrinsic nonlinearities in the mechanics of hard sphere suspensions, Soft Matter 12, 7655–7662.

    Article  Google Scholar 

  • Lee, S.H., H.Y. Song, and K. Hyun, 2016, Effects of silica nanoparticles on copper nanowire dispersions in aqueous PVA solutions, Korea-Aust. Rheol. J. 28, 111–120.

    Article  Google Scholar 

  • Lim, H.T., K.H. Ahn, J.S. Hong, and K. Hyun, 2013, Nonlinear viscoelasticity of polymer nanocomposites under large amplitude oscillatory shear flow, J. Rheol. 57, 767–789.

    Article  Google Scholar 

  • Merger, D., M. Abbasi, J. Merger, A.J. Giacomin, C. Saengow, and M. Wilhelm, 2016, Simple scalar model and analysis for large amplitude oscillatory shear, Appl. Rheol. 26, 53809.

    Google Scholar 

  • Ock, H.G., K.H. Ahn, S.J. Lee, and K. Hyun, 2016, Characterization of compatibilizing effect of organoclay in poly(lactic acid) and natural rubber blends by FT-rheology, Macromolecules 49, 2832–2842.

    Article  Google Scholar 

  • Park, C.H., K.H. Ahn, and S.J. Lee, 2018, Path-dependent work and energy in large amplitude oscillatory shear flow, J. Non-Newton. Fluid Mech. 251, 1–9.

    Article  Google Scholar 

  • Payne, A.R., 1962, The dynamic properties of carbon blackloaded natural rubber vulcanizates. Part I, J. Appl. Polym. Sci. 6, 57–63.

    Article  Google Scholar 

  • Pearson, D.S. and W.E. Rochefort, 1982, Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields, J. Polym. Sci. Pt. B-Polym. Phys. 20, 83–98.

    Article  Google Scholar 

  • Rogers, S.A., 2012, A sequence of physical processes determined and quantified in LAOS: An instantaneous local 2D/3D approach, J. Rheol. 56, 1129–1151.

    Article  Google Scholar 

  • Salehiyan, R., H.Y. Song, M. Kim, W.J. Choi, and K. Hyun, 2016, Morphological evaluation of PP/PS blends filled with different types of clays by nonlinear rheological analysis, Macromolecules 49, 3148–3160.

    Article  Google Scholar 

  • Salehiyan, R., H.Y. Song, W.J. Choi, and K. Hyun, 2015, Characterization of effects of silica nanoparticles on (80/20) PP/PS blends via nonlinear rheological properties from Fourier transform rheology, Macromolecules 48, 4669–4679.

    Article  Google Scholar 

  • Salehiyan, R., Y. Yoo, W.J. Choi, and K. Hyun, 2014, Characterization of morphologies of compatibilized polypropylene/polystyrene blends with nanoparticles via nonlinear rheological properties from FT-rheology, Macromolecules 47, 4066–4076.

    Article  Google Scholar 

  • Shahid, T., Q. Huang, F. Oosterlinck, C. Clasen, and E. van Ruymbeke, 2017, Dynamic dilution exponent in monodisperse entangled polymer solutions, Soft Matter 13, 269–282.

    Article  Google Scholar 

  • Song, H.Y. and K. Hyun, 2018, Decomposition of Q0 from FT rheology into elastic and viscous parts: Intrinsic-nonlinear master curves for polymer solutions, J. Rheol. 62, 919–939.

    Article  Google Scholar 

  • Song, H.Y., O.S. Nnyigide, R. Salehiyan, and K. Hyun, 2016, Investigation of nonlinear rheological behavior of linear and 3-arm star 1,4-cis-polyisoprene (PI) under medium amplitude oscillatory shear (MAOS) flow via FT-rheology, Polymer 104, 268–278.

    Article  Google Scholar 

  • Song, H.Y., R. Salehiyan, X. Li, S.H. Lee, and K. Hyun, 2017a, A comparative study of the effects of cone-plate and parallelplate geometries on rheological properties under oscillatory shear flow, Korea-Aust. Rheol. J. 29, 281–294.

    Google Scholar 

  • Song, H.Y., S.J. Park, and K. Hyun, 2017b, Characterization of dilution effect of semidilute polymer solution on intrinsic nonlinearity Q0 via FT rheology, Macromolecules 50, 6238–6254.

    Article  Google Scholar 

  • Vananroye, A., P. Leen, P. Van Puyvelde, and C. Clasen, 2011, TTS in LAOS: Validation of time-temperature superposition under large amplitude oscillatory shear, Rheol. Acta 50, 795–807.

    Article  Google Scholar 

  • Wagner, M.H., V.H. Rolón-Garrido, K. Hyun, and M. Wilhelm, 2011, Analysis of medium amplitude oscillatory shear data of entangled linear and model comb polymers, J. Rheol. 55, 495–516.

    Article  Google Scholar 

  • Wang, M.J., 1998, Effect of polymer-filler and filler-filler interactions on dynamic properties of filled vulcanizates, Rubber Chem. Technol. 71, 520–589.

    Article  Google Scholar 

  • Wilhelm, M., 2002, Fourier-transform rheology, Macromol. Mater. Eng. 287, 83–105.

    Article  Google Scholar 

  • Xiong, W. and X. Wang, 2018, Linear-nonlinear dichotomy of rheological responses in particle-filled polymer melts, J. Rheol. 62, 171–181.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu Hyun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, H.Y., Hyun, K. First-harmonic intrinsic nonlinearity of model polymer solutions in medium amplitude oscillatory shear (MAOS). Korea-Aust. Rheol. J. 31, 1–13 (2019). https://doi.org/10.1007/s13367-019-0001-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-019-0001-x

Keywords

Navigation