Skip to main content
Log in

Large-amplitude oscillatory shear to investigate the nonlinear rheology of polymer glasses – PMMA

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Small-amplitude oscillatory shear (SAOS) tests provide a complete framework to characterize a viscoelastic material in the linear regime. Large-amplitude oscillatory shear (LAOS) tests in which the material is subjected to large sinusoidal strain amplitudes, and the resulting nonsinusoidal stress waveform is analyzed, have recently become an area of research in the characterization of nonlinear viscoelastic behavior. LAOS tests have been applied on various types of viscoelastic materials and a Fourier-transform analysis has been used to characterize the nonlinearity by the occurrence of higher-order harmonics. Other works have attempted to improve on the existing Fourier-transform method and have also introduced new methods to characterize the nonlinearity, which can provide a physical significance to the parameters involved. While much soft matter has been examined within the various LAOS frameworks, very few attempts have been made to describe the behavior of glassy polymers within the LAOS framework. Here, we report the results of LAOS experiments in which we explore the nonlinear response of a glassy polymethyl methacrylate (PMMA) at 22 °C. We look at the behavior both qualitatively and quantitatively using Lissajous–Bowditch (LB) loops, Fourier-transform rheology (FTR), and Chebyshev-polynomial descriptions of behavior. The stress responses from the LAOS tests are also compared with those predicted by the BKZ nonlinear constitutive model. We report the absolute intensity of the harmonics and their variation with the strain amplitude. For PMMA, the normalized third-harmonic intensity, which is one characteristic of the nonlinearity, does not follow a quadratic dependence on strain amplitude as observed in several other materials. The Chebyshev-polynomial method provides a physical interpretation via the normalized third-order Chebyshev coefficients that were calculated using the MITLAOS MATLAB program. Normalized elastic Chebyshev coefficients showed strain softening, while shear-softening behavior was observed from normalized viscous Chebyshev coefficients for PMMA with an increase in strain amplitude. We have also compared the FTR and Chebyshev methodologies for a purely elastic material and have shown that the Chebyshev analysis can effectively separate the nonlinearity as contributed by elastic and viscous parts, while the harmonic FT analysis characterizes nonlinearity as a combined effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abramowitz, M., Stegun, I.: Applied Mathematics Series. National Bureau of Standards. Dover, New York (1968)

    Google Scholar 

  • Adrian, D., Giacomin, A.: The quasi-periodic nature of a polyurethane melt in oscillatory shear. J. Rheol. 36, 1227–1243 (1992)

    Article  Google Scholar 

  • Bernstein, B., Kearsley, E., Zapas, L.: A study of stress relaxation with finite strain. Trans. Soc. Rheol. 7, 391–410 (1963)

    Article  MATH  Google Scholar 

  • Bowditch, N.: On the motion of a pendulum suspended from two points. Mem. Am. Acad. Arts Sci. 3, 413–436 (1815)

    Google Scholar 

  • Chandra Hari Mangalara, S., Paudel, S., McKenna, G.B.: Mechanical spectral hole burning in glassy polymers—investigation of polycarbonate, a material with weak \(\beta \)-relaxation. J. Chem. Phys. 154, 124904 (2021)

    Article  Google Scholar 

  • Cho, K.S., Hyun, K., Ahn, K.H., Lee, S.J.: A geometrical interpretation of large amplitude oscillatory shear response. J. Rheol. 49, 747–758 (2005)

    Article  Google Scholar 

  • Davis, W., Macosko, C.: Nonlinear dynamic mechanical moduli for polycarbonate and PMMA. J. Rheol. 22, 53–71 (1978)

    Article  Google Scholar 

  • Dealy, J.M., Wissbrun, K.F.: Melt Rheology and Its Role in Plastics Processing: Theory and Applications. Springer, Berlin (2012)

    Google Scholar 

  • Ediger, M.D., Angell, C.A., Nagel, S.R.: Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996)

    Article  Google Scholar 

  • Ewoldt, R.H.: Defining nonlinear rheological material functions for oscillatory shear. J. Rheol. 57, 177–195 (2013)

    Article  Google Scholar 

  • Ewoldt, R.H., McKinley, G.H.: On secondary loops in LAOS via self-intersection of Lissajous–Bowditch curves. Rheol. Acta 49, 213–219 (2010)

    Article  Google Scholar 

  • Ewoldt, R.H., Hosoi, A.E., McKinley, G.H.: Rheological fingerprinting of complex fluids using large amplitude oscillatory shear (LAOS) flow. Annu. Trans. Nord. Rheol. Soc. 15, 3 (2007)

    Google Scholar 

  • Ewoldt, R.H., Hosoi, A., McKinley, G.H.: New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J. Rheol. 52, 1427–1458 (2008)

    Article  Google Scholar 

  • Ewoldt, R.H., Hosoi, A.E., McKinley, G.H.: Nonlinear viscoelastic biomaterials: meaningful characterization and engineering inspiration. Integr. Comp. Biol. 49, 40–50 (2009)

    Article  Google Scholar 

  • Ferry, J.D.: Viscoelastic Properties of Polymers, 3rd edn. Wiley, New York (1980)

    Google Scholar 

  • Fletcher, W., Gent, A.: Nonlinearity in the dynamic properties of vulcanized rubber compounds. Rubber Chem. Technol. 27, 209–222 (1954)

    Article  Google Scholar 

  • Gamota, D.R., Wineman, A.S., Filisko, F.E.: Fourier transform analysis: nonlinear dynamic response of an electrorheological material. J. Rheol. 37, 919–933 (1993)

    Article  Google Scholar 

  • Giacomin, A.J., Dealy, J.M.: In: Techniques in Rheological Measurement, pp. 99–121. Springer, Berlin (1993)

    Chapter  Google Scholar 

  • Giacomin, A., Oakley, J.: Structural network models for molten plastics evaluated in large amplitude oscillatory shear. J. Rheol. 36, 1529–1546 (1992)

    Article  Google Scholar 

  • Giacomin, A., Jeyaseelan, R., Samurkas, T., Dealy, J.: Validity of separable BKZ model for large amplitude oscillatory shear. J. Rheol. 37, 811–826 (1993)

    Article  Google Scholar 

  • Harris, J.: Response of time-dependent materials to oscillatory motion. Nature 207, 744 (1965)

    Article  Google Scholar 

  • Hatzikiriakos, S., Dealy, J.: Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies. J. Rheol. 35, 497–523 (1991)

    Article  Google Scholar 

  • Hill, A.J., Tant, M.R.: The structure and properties of glassy polymers: an overview (1999)

  • Hyun, K., Wilhelm, M.: Establishing a new mechanical nonlinear coefficient Q from FT-rheology: first investigation of entangled linear and comb polymer model systems. Macromolecules 42, 411–422 (2009)

    Article  Google Scholar 

  • Hyun, K., Ahn, K.H., Lee, S.J., Sugimoto, M., Koyama, K.: Degree of branching of polypropylene measured from Fourier-transform rheology. Rheol. Acta 46, 123–129 (2006a)

    Article  Google Scholar 

  • Hyun, K., Nam, J.G., Wilhellm, M., Ahn, K.H., Lee, S.J.: Large amplitude oscillatory shear behavior of PEO-PPO-PEO triblock copolymer solutions. Rheol. Acta 45, 239–249 (2006b)

    Article  Google Scholar 

  • Hyun, K., Baik, E.S., Ahn, K.H., Lee, S.J., Sugimoto, M., Koyama, K.: Fourier-transform rheology under medium amplitude oscillatory shear for linear and branched polymer melts. J. Rheol. 51, 1319–1342 (2007)

    Article  Google Scholar 

  • Hyun, K., Wilhelm, M., Klein, C.O., Cho, K.S., Nam, J.G., Ahn, K.H., Lee, S.J., Ewoldt, R.H., McKinley, G.H.: A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog. Polym. Sci. 36, 1697–1753 (2011)

    Article  Google Scholar 

  • Kaye, A.: Non-Newtonian flow in incompressible fluids. Note 134 & 149, College of Aeronautics Cranfield (1962)

  • Klein, C.O., Spiess, H.W., Calin, A., Balan, C., Wilhelm, M.: Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip response. Macromolecules 40, 4250–4259 (2007)

    Article  Google Scholar 

  • Klein, C., Venema, P., Sagis, L., van der Linden, E.: Rheological discrimination and characterization of carrageenans and starches by Fourier transform-rheology in the non-linear viscous regime. J. Non-Newton. Fluid Mech. 151, 145–150 (2008)

    Article  MATH  Google Scholar 

  • Kohlrausch, R.: Theorie des elektrischen Rückstandes in der Leidener Flasche. Ann. Phys. 167, 179–214 (1854)

    Article  Google Scholar 

  • Komatsu, H., Mitsui, T., Onogi, S.: Nonlinear viscoelastic properties of semisolid emulsions. Trans. Soc. Rheol. 17, 351–364 (1973)

    Article  Google Scholar 

  • Larson, R.G.: The Structure and Rheology of Complex Fluids, vol. 150. Oxford university press, New York (1999)

    Google Scholar 

  • Lee, H.N., Paeng, K., Swallen, S.F., Ediger, M.D., Stamm, R.A., Medvedev, G.A., Caruthers, J.M.: Molecular mobility of poly (methyl methacrylate) glass during uniaxial tensile creep deformation. J. Polym. Sci., Part B, Polym. Phys. 47, 1713–1727 (2009)

    Article  Google Scholar 

  • Lissajous, J.-A.: Mémoire sur l’étude optique des mouvements vibratoires, pp. 147–231. Annales de chimie et de physique, Mallet-Bachelier (1857)

  • Liu, J., Yu, W., Zhou, W., Zhou, C.: Control on the topological structure of polyolefin elastomer by reactive processing. Polymer 50, 547–552 (2009)

    Article  Google Scholar 

  • MacDonald, I.F., Marsh, B.D., Ashare, E.: Rheological behavior for large amplitude oscillatory motion. Chem. Eng. Sci. 24, 1615–1625 (1969)

    Article  Google Scholar 

  • Macosko, C.W.: Rheology: Principles, Measurements and Applications. Wiley-VCH, New York (1994)

    Google Scholar 

  • Mangalara, S.C.H., McKenna, G.B.: Mechanical hole-burning spectroscopy of PMMA deep in the glassy state. J. Chem. Phys. 152, 074508 (2020)

    Article  Google Scholar 

  • Matsumoto, T., Segawa, Y., Warashina, Y., Onogi, S.: Nonlinear behavior of viscoelastic materials. II. The method of analysis and temperature dependence of nonlinear viscoelastic functions. Trans. Soc. Rheol. 17, 47–62 (1973)

    Article  Google Scholar 

  • McKenna, G.B.: Glass formation and glassy behavior. In: Comprehensive Polymer Science: The Synthesis, Characterization, Reactions & Applications of Polymers, vol. 2, pp. 311–362. Pergamon, Oxford (1989)

    Google Scholar 

  • McKenna, G.B., Kovacs, A.J.: Physical aging of poly (methyl methacrylate) in the nonlinear range: torque and normal force measurements. Polym. Eng. Sci. 24, 1138–1141 (1984)

    Article  Google Scholar 

  • McKenna, G.B., Zapas, L.J.: Nonlinear viscoelastic behavior of poly (methyl methacrylate) in torsion. J. Rheol. 23, 151–166 (1979)

    Article  Google Scholar 

  • McKenna, G.B., Zapas, L.J.: The normal stress response in nonlinear viscoelastic materials: some experimental findings. J. Rheol. 24, 367–377 (1980)

    Article  Google Scholar 

  • McKenna, G.B., Zapas, L.J.: The superposition of small deformations on large deformations: measurements of the incremental relaxation modulus for a polyisobutylene solution. J. Polym. Sci., Polym. Phys. Ed. 23, 1647–1656 (1985)

    Article  Google Scholar 

  • Onogi, S., Masuda, T., Matsumoto, T.: Non-linear behavior of viscoelastic materials. I. Disperse systems of polystyrene solution and carbon black. Trans. Soc. Rheol. 14, 275–294 (1970)

    Article  Google Scholar 

  • Payne, A.: The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. Rubber Chem. Technol. 36, 432–443 (1963)

    Article  Google Scholar 

  • Pearson, D.S., Rochefort, W.E.: Behavior of concentrated polystyrene solutions in large-amplitude oscillating shear fields. J. Polym. Sci., Polym. Phys. Ed. 20, 83–98 (1982)

    Article  Google Scholar 

  • Philippoff, W.: Vibrational measurements with large amplitudes. Trans. Soc. Rheol. 10, 317–334 (1966)

    Article  Google Scholar 

  • Richert, R.: Spectral selectivity in the slow \(\beta \)-relaxation of a molecular glass. Europhys. Lett. 54, 767 (2001)

    Article  Google Scholar 

  • Shamim, N., McKenna, G.B.: Mechanical spectral hole burning in polymer solutions: comparison with large amplitude oscillatory shear fingerprinting. J. Rheol. 58, 43–62 (2014)

    Article  Google Scholar 

  • Shi, X., McKenna, G.B.: Mechanical hole-burning spectroscopy: demonstration of hole burning in the terminal relaxation regime. Phys. Rev. B 73, 014203 (2006)

    Article  Google Scholar 

  • Sim, H.G., Ahn, K.H., Lee, S.J.: Three-dimensional dynamics simulation of electrorheological fluids under large amplitude oscillatory shear flow. J. Rheol. 47, 879–895 (2003)

    Article  Google Scholar 

  • Smart, J., Williams, J.: A comparison of single-integral non-linear viscoelasticity theories. J. Mech. Phys. Solids 20, 313–324 (1972)

    Article  MATH  Google Scholar 

  • Struik, L.C.E.: Physical Aging in Polymers and Other Amorphous Materials. Elsevier, Amsterdam (1978)

    Google Scholar 

  • Sui, C., McKenna, G.B.: Nonlinear viscoelastic properties of branched polyethylene in reversing flows. J. Rheol. 51, 341–365 (2007)

    Article  Google Scholar 

  • Torcello-Gómez, A., Maldonado-Valderrama, J., Galvez-Ruiz, M.J., Martin-Rodriguez, A., Cabrerizo-Vilchez, M.A., De Vincente, J.: Surface rheology of sorbitan tristearate and \(\beta \)-lactoglobulin: shear and dilatational behavior. J. Non-Newton. Fluid Mech. 166, 713–722 (2011)

    Article  Google Scholar 

  • Tschoegl, N.W.: In: The Phenomenological Theory of Linear Viscoelastic Behavior, pp. 314–364. Springer, Berlin (1989)

    Chapter  MATH  Google Scholar 

  • Van der Vaart, K., Depypere, F., De Graef, V., Schall, P., Fall, A., Bonn, D., Dewettinck, K.: Dark chocolate’s compositional effects revealed by oscillatory rheology. Eur. Food Res. Technol. 236, 931–942 (2013)

    Article  Google Scholar 

  • Vasquez, E.S., Bowser, J., Swiderski, C., Walters, K.B., Kundu, S.: Rheological characterization of mammalian lung mucus. RSC Adv. 4, 34780–34783 (2014)

    Article  Google Scholar 

  • Venerus, D., Kahvand, H.: Doi-Edwards theory evaluation in double-step strain flows. J. Polym. Sci., Part B, Polym. Phys. 32, 1531–1542 (1994)

    Article  Google Scholar 

  • Venerus, D., Vrentas, C.M., Vrentas, J.: Step strain deformations for viscoelastic fluids: experiment. J. Rheol. 34, 657–684 (1990)

    Article  MATH  Google Scholar 

  • Wagner, M., Ehrecke, P.: Dynamics of polymer melts in reversing shear flows. J. Non-Newton. Fluid Mech. 76, 183–197 (1998)

    Article  MATH  Google Scholar 

  • Waldron, W.K. Jr, McKenna, G.B., Santore, M.M.: The nonlinear viscoelastic response and apparent rejuvenation of an epoxy glass. J. Rheol. 39, 471–497 (1995)

    Article  Google Scholar 

  • Wilhelm, M.: Fourier-transform rheology. Macromol. Mater. Eng. 287, 83–105 (2002)

    Article  Google Scholar 

  • Wilhelm, M., Maring, D., Spiess, H.-W.: Fourier-transform rheology. Rheol. Acta 37, 399–405 (1998)

    Article  Google Scholar 

  • Wilhelm, M., Reinheimer, P., Ortseifer, M.: High sensitivity Fourier-transform rheology. Rheol. Acta 38, 349–356 (1999)

    Article  Google Scholar 

  • Wilhelm, M., Reinheimer, P., Ortseifer, M., Neidhöfer, T., Spiess, H.-W.: The crossover between linear and non-linear mechanical behaviour in polymer solutions as detected by Fourier-transform rheology. Rheol. Acta 39, 241–246 (2000)

    Article  Google Scholar 

  • Williams, G., Watts, D.C.: Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Science Foundation under grant MoMS 1662474, the Petroleum Research Fund under grant PRF# 60750-ND7, and the John R. Bradford Endowment at Texas Tech University, each for partial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory B. McKenna.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangalara, S.C.H., McKenna, G.B. Large-amplitude oscillatory shear to investigate the nonlinear rheology of polymer glasses – PMMA. Mech Time-Depend Mater 27, 99–117 (2023). https://doi.org/10.1007/s11043-021-09529-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-021-09529-6

Keywords

Navigation