Skip to main content
Log in

First-harmonic nonlinearities can predict unseen third-harmonics in medium-amplitude oscillatory shear (MAOS)

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

We use first-harmonic MAOS nonlinearities from G1′ and G1″ to test a predictive structure-rheology model for a transient polymer network. Using experiments with PVA-Borax (polyvinyl alcohol cross-linked by sodium tetraborate (borax)) at 11 different compositions, the model is calibrated to first-harmonic MAOS data on a torque-controlled rheometer at a fixed frequency, and used to predict third-harmonic MAOS on a displacement controlled rheometer at a different frequency three times larger. The prediction matches experiments for decomposed MAOS measures [e3] and [v3] with median disagreement of 13% and 25%, respectively, across all 11 compositions tested. This supports the validity of this model, and demonstrates the value of using all four MAOS signatures to understand and test structure-rheology relations for complex fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bharadwaj, N.A. and R.H. Ewoldt, 2015, Constitutive model fingerprints in medium-amplitude oscillatory shear, J. Rheol. 59, 557–592.

    Article  Google Scholar 

  • Bharadwaj, N.A., K.S. Schweizer, and R.H. Ewoldt, 2017, A strain stiffening theory for transient polymer networks under asymptotically nonlinear oscillatory shear, J. Rheol. 61, 643–665.

    Article  Google Scholar 

  • Chen, C.Y. and T.-L. Yu, 1997, Dynamic light scattering of poly (vinyl alcohol)-borax aqueous solution near overlap concentration, Polymer 38, 2019–2025.

    Article  Google Scholar 

  • Davis, W.M. and C.W. Macosko, 1978, Nonlinear dynamic mechanical moduli for polycarbonate and PMMA, J. Rheol. 22, 53–71.

    Article  Google Scholar 

  • Ewoldt, R.H., 2013, Defining nonlinear rheological material functions for oscillatory shear J. Rheol. 57, 177–195.

    Article  Google Scholar 

  • Ewoldt, R.H., A. Hosoi, and G.H. McKinley, 2008, New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear, J. Rheol. 52, 1427–1458.

    Article  Google Scholar 

  • Ewoldt, R.H. and N.A. Bharadwaj, 2013, Low-dimensional intrinsic material functions for nonlinear viscoelasticity, Rheol. Acta 52, 201–219.

    Article  Google Scholar 

  • Ewoldt, R.H., M.T. Johnston, and L.M. Caretta, 2015, Experimental challenges of shear rheology: How to avoid bad data, In: Spagnolie, S.E. eds., Complex Fluids in Biological Systems, Springer, New York, 207–241.

    Google Scholar 

  • Gurnon, A.K. and N.J. Wagner, 2012, Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles. J. Rheol. 56, 333–351.

    Article  Google Scholar 

  • Huang, G., H. Zhang, Y. Liu, H. Chang, H. Zhang, H. Song, D. Xu, and T. Shi, 2017, Strain hardening behavior of poly (vinyl alcohol)/borate hydrogels, Macromolecules 50, 2124–2135.

    Article  Google Scholar 

  • Hyun, K., E.S. Baik, K.H. Ahn, S.J. Lee, M. Sugimoto, and K. Koyama, 2007, Fourier-transform rheology under medium amplitude oscillatory shear for linear and branched polymer melts, J. Rheol. 51, 1319–1342.

    Article  Google Scholar 

  • Hyun, K. and M. Wilhelm, 2009, Establishing a new mechanical nonlinear coefficient Q from FT-rheology: First investigation of entangled linear and comb polymer model systems, Macromolecules 2, 411–422.

    Article  Google Scholar 

  • Hyun, K., M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt, and G.H. McKinley, 2011, A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS), Prog. Polym. Sci. 36, 1697–1753.

    Article  Google Scholar 

  • Inoue, T. and K. Osaki, 1993, Rheological properties of poly (vinyl alcohol)/sodium borate aqueous solutions, Rheol. Acta 32, 550–555.

    Article  Google Scholar 

  • Keita, G., A. Ricard, R. Audebert, E. Pezron, and L. Leibler, 1995, The poly (vinyl alcohol)-borate system: Inuence of polyelectrolyte effects on phase diagrams, Polymer 36, 49–54.

    Article  Google Scholar 

  • Kirkwood, J.G. and R.J. Plock, 1956, Non-Newtonian viscoelastic properties of rod-like macromolecules in solution, J. Chem. Phys. 24, 665–669.

    Article  Google Scholar 

  • Koike, A., N. Nemoto, T. Inoue, and K. Osaki, 1995, Dynamic light scattering and dynamic viscoelasticity of poly (vinyl alcohol) in aqueous borax solutions. 1. Concentration effect, Macromolecules 28, 2339–2344.

    Article  Google Scholar 

  • Kurokawa, H., M. Shibayama, T. Ishimaru, S. Nomura, and W.-L. Wu, 1992, Phase behaviour and sol-gel transition of poly (vinyl alcohol)-borate complex in aqueous solution, Polymer 33, 2182–2188.

    Article  Google Scholar 

  • Lin, H.-L., Y.-F. Liu, T.L. Yu, W.-H. Liu, and S.-P. Rwei, 2005, Light scattering and viscoelasticity study of poly (vinyl alcohol)-borax aqueous solutions and gels, Polymer 46, 5541–5549.

    Article  Google Scholar 

  • Macosko, C.W., 1994, Rheology: Principles, Measurements, and Applications, Wiley-VCH, New York.

    Google Scholar 

  • Merger, D. and M. Wilhelm, 2014, Intrinsic nonlinearity from LAOStrain-experiments on various strain-and stress-controlled rheometers: A quantitative comparison, Rheol. Acta 53, 621–634.

    Article  Google Scholar 

  • Nemoto, N., A. Koike, and K. Osaki, 1996, Dynamic light scattering and dynamic viscoelasticity of poly (vinyl alcohol) in aqueous borax solutions. 2. polymer concentration and molecular weight effects, Macromolecules 29, 1445–1451.

    Article  Google Scholar 

  • Onogi, S., T. Masuda, and T. Matsumoto, 1970, Non-linear behavior of viscoelastic materials. I. Disperse systems of polystyrene solution and carbon black, J. Rheol. 14, 275–294.

    Google Scholar 

  • Paul, E., 1969, Non-Newtonian viscoelastic properties of rodlike molecules in solution: Comment on a paper by Kirkwood and Plock, J. Chem. Phys. 51, 1271–1272.

    Article  Google Scholar 

  • Rogers, S.A., 2012, A sequence of physical processes determined and quantified in LAOS: An instantaneous local 2D/3D approach, J. Rheol. 56, 1129–1151.

    Article  Google Scholar 

  • Rogers, S.A., 2017, In search of physical meaning: Defining transient parameters for nonlinear viscoelasticity, Rheol. Acta 56, 501–525.

    Article  Google Scholar 

  • Saengow, C., A.J. Giacomin, and C. Kolitawong, 2017, Exact analytical solution for large-amplitude oscillatory shear flow from Oldroyd 8-constant framework: Shear stress, Phys. Fluids 29, 043101.

    Article  Google Scholar 

  • Wagner, M.H., V.H. Rolón-Garrido, K. Hyun, and M. Wilhelm, 2011, Analysis of medium amplitude oscillatory shear data of entangled linear and model comb polymers, J. Rheol. 55, 495–516.

    Article  Google Scholar 

  • Wang, S.-Q., S. Ravindranath, and P.E. Boukany, 2011, Homogeneous shear, wall slip, and shear banding of entangled polymeric liquids in simple-shear rheometry: A roadmap of nonlinear rheology, Macromolecules 44, 183–190.

    Google Scholar 

  • Wilhelm, M., 2002, Fourier-transform rheology, Macromol. Mater. Eng. 287, 83–105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy H. Ewoldt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carey-De La Torre, O., Ewoldt, R.H. First-harmonic nonlinearities can predict unseen third-harmonics in medium-amplitude oscillatory shear (MAOS). Korea-Aust. Rheol. J. 30, 1–10 (2018). https://doi.org/10.1007/s13367-018-0001-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-018-0001-2

Keywords

Navigation