Skip to main content
Log in

Poncelet plectra: harmonious curves in cosine space

  • Original Paper
  • Published:
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry Aims and scope Submit manuscript

Abstract

It has been shown that the family of Poncelet N-gons in the confocal pair (elliptic billiard) conserves the sum of cosines of its internal angles. Curiously, this quantity is equal to the sum of cosines conserved by its affine image where the caustic is a circle. We show that furthermore, (i) when N = 3, the cosine triples of both families sweep the same planar curve: an equilateral cubic resembling a plectrum (guitar pick). We also show that (ii) the family of triangles excentral to the confocal family conserves the same product of cosines as the one conserved by its affine image inscribed in a circle; and that (iii) cosine triples of both families sweep the same spherical curve. When the triple of log-cosines is considered, this curve becomes a planar, plectrum-shaped curve, rounder than the one swept by its parent confocal family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. The full result admits that the polygon sides be tangent to up to N separate conics in the linear pencil defined by the outer one and a member of the second set (PCT) (del Centina 2016).

  2. Shorthand for inscribed while simultaneously circumscribing.

  3. The affine image which sends the elliptic billiard to a circle also produces an N-periodic family whose invariant cosine product is equal to that conserved by the outer polygons of the confocal pre-image.

  4. A triangle’s orthic has vertices at the feet of the altitudes (Weisstein 2019, Orthic Triangle).

References

  • Akopyan, A., Schwartz, R., Tabachnikov, S.: Billiards in ellipses revisited. Eur. J. Math. (2020). https://doi.org/10.1007/s40879-020-00426-9

  • Armitage, J.V., Eberlein, W.F.: Elliptic Functions. Cambridge University Press, London (2006)

    MATH  Google Scholar 

  • Bialy, M., Tabachnikov, S.: Dan Reznik’s identities and more. Eur. J. Math. (2020). https://doi.org/10.1007/s40879-020-00428-7

  • Bos, H.J.M., Kers, C., Oort, F., Raven, D.W.: Poncelet’s closure theorem. Expo. Math. 5(4), 289–364 (1987)

    MathSciNet  MATH  Google Scholar 

  • Chavez-Caliz, A.: More about areas and centers of Poncelet polygons. Arnold Math. J. (2020). https://doi.org/10.1007/s40598-020-00154-8

  • Cieślak, W., Martini, H., Mozgawa, W.: On the rotation index of bar billiards and Poncelet’s porism. Bull. Belg. Math. Soc. Simon Stevin 20(2), 287–300 (2013)

    Article  MathSciNet  Google Scholar 

  • Connes, A., Zagier, D.: A property of parallelograms inscribed in ellipses. Am. Math. Mon. 114(10), 909–914 (2007)

    Article  MathSciNet  Google Scholar 

  • del Centina, A.: Poncelet’s porism: a long story of renewed discoveries i. Arch. Hist. Exact Sci. 70(2), 1–122 (2016)

    Article  MathSciNet  Google Scholar 

  • Dragović, V., Radnović, M.: Poncelet Porisms and Beyond: Integrable Billiards, Hyperelliptic Jacobians and Pencils of Quadrics. Frontiers in Mathematics. Springer, Basel (2011)

  • Ferréol, R.: The Titeica surface. MathCurve. https://mathcurve.com/surfaces.gb/titeica/titeica.shtml (2017)

  • Flatto, L.: Poncelet’s Theorem, Chapter 15 by S. Tabachnikov. Am. Math. Soc., Providence (2009)

  • Garcia, R.: Elliptic billiards and ellipses associated to the 3-periodic orbits. Am. Math. Mon. 126(06), 491–504 (2019)

    Article  MathSciNet  Google Scholar 

  • Garcia, R., Reznik, D.: Family ties: Relating Poncelet 3-periodics by their properties. J. Croat. Soc. Geom. Gr. (KoG) (to appear)arXiv:2012.11270 (2021)

  • Garcia, R., Reznik, D., Koiller, J.: New properties of triangular orbits in elliptic billiards. Am. Math. Mon. (to appear)arXiv:2001.08054 (2020)

  • Georgiev, V., Nedyalkova, V.: Poncelet’s porism and periodic triangles in ellipse. Dynamat. http://www.dynamat.oriw.eu/upload_pdf/20121022_153833__0.pdf (2012)

  • Griffiths, P., Harris, J.: On Cayley’s explicit solution to Poncelet’s porism. Enseign. Math. 24(1–2), 31–40 (1978)

  • Johnson, R.A.: Advanced Euclidean Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle, 2nd edn. Dover, New York. Editor John W. Young (1960)

  • Kaloshin, V., Sorrentino, A.: On the integrability of Birkhoff billiards. Philos. Trans. R. Soc. A (376) (2018)

  • Koiller, J., Reznik, D., Garcia, R.: Average elliptic billiard invariants with spatial integrals. arXiv:2102.10899 (2021)

  • Levi, M., Tabachnikov, S.: The Poncelet grid and billiards in ellipses. Am. Math. Mon. 114(10), 895–908 (2007)

    Article  MathSciNet  Google Scholar 

  • Lynch, P.: Integrable elliptic billiards and ballyards. Eur. J. Phys. 41(1) (2019)

  • Reznik, D., Garcia, R., Koiller, J.: Can the elliptic billiard still surprise us? Math Intell. 42, 6–17 (2020)

    Article  MathSciNet  Google Scholar 

  • Reznik, D., Garcia, R., Koiller, J.: Fifty new invariants of N-periodics in the elliptic billiard. Arnold Math. J. 7, 341–355 (2021)

    Article  MathSciNet  Google Scholar 

  • Rozikov, U.A.: An Introduction to Mathematical Billiards. World Scientific Publishing Co, Hackensack (2018)

    Book  Google Scholar 

  • Schwartz, R.E.: The Poncelet grid. Adv. Geom. 7(2), 157–175 (2007)

    Article  MathSciNet  Google Scholar 

  • Stachel, H.: The geometry of billiards in ellipses and their Poncelet grids. arXiv:2105.03362 (2021a)

  • Stachel, H.: Isometric billiards in ellipses and focal billiards in ellipsoids. arXiv:2105.05295 (2021b)

  • Stachel, H.: On the motion of billiards in ellipses. arXiv:2105.03624 (2021c)

  • Tabachnikov, S.: Geometry and Billiards, Student Mathematical Library, vol. 30. American Mathematical Society, Providence. Mathematics Advanced Study Semesters, University Park (2005)

  • Weisstein, E.: Mathworld. MathWorld—A Wolfram Web Resource. https://mathworld.wolfram.com (2019)

Download references

Acknowledgements

We would like to thank A. Akopyan for pointing out the relationship of some of our results with Akopyan et al. (2020, Thm 6.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Reznik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaud, D., Reznik, D. & Garcia, R. Poncelet plectra: harmonious curves in cosine space. Beitr Algebra Geom 63, 115–131 (2022). https://doi.org/10.1007/s13366-021-00596-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13366-021-00596-x

Keywords

Mathematics Subject Classification

Navigation