Skip to main content
Log in

Functional Microgels Assisted Tryptic Digestion and Quantification of Cytochrome c Through Internal Standard Mass Spectrometry

  • Research Article
  • Published:
Journal of The American Society for Mass Spectrometry

Abstract

Quantitation of cytochrome c (Cyt c) in cell lysates through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using gold nanoparticles (Au NPs) as the matrix and GR-10 peptide as an internal standard has been demonstrated. To shorten digestion time, temperature sensitive microgels containing trypsin (TR) and Au NPs have been employed. As-prepared functional microgels (TR/Au NPs/MGs) allow digestion of Cyt c within 15 s under microwave irradiation. The internal standard SALDI-MS approach provides linearity (R2 = 0.98) of MS signal ratio (I 1168.6/I 1067.6) of the tryptic digested peptide (m/z 1168.6) to GR-10 peptide (m/z 1067.6) against the concentration of Cyt c ranging from 25 to 200 nM, with a limit of detection (at a signal-to-noise ratio of 3) of 10 nM. This approach has been validated by the analysis of the lysates of HeLa cells, with an average concentration of 13.7 ± 3.5 μM for cytoplasmic Cyt c. Increased concentrations of Cyt c in the HeLa cells treated with etoposide (a commercial drug) or carbon dots (potential drug) have been revealed through this simple, sensitive, and rapid SALDI-MS approach, supporting the drugs induced Cyt c-mediated apoptosis of the cells. This study has shown that this internal standard SALDI-MS approach holds great potential for cell study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Rifai, N., Gillette, M.A., Carr, S.A.: Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol. 24(8), 971–983 (2006)

    Article  CAS  Google Scholar 

  2. Hüttenhain, R., Malmström, J., Picotti, P., Aebersold, R.: Perspectives of targeted mass spectrometry for protein biomarker verification. Curr. Opin. Chem. Biol. 13(5), 518–525 (2009)

    Article  Google Scholar 

  3. Karas, M., Hillenkamp, F.: Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60(20), 2299–2301 (1988)

    Article  CAS  Google Scholar 

  4. Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T.: Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2(8), 151–153 (1988)

    Article  CAS  Google Scholar 

  5. Wen, X., Dagan, S., Wysocki, V.H.: Small-molecule analysis with silicon-nanoparticle-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 79(2), 434–444 (2007)

    Article  CAS  Google Scholar 

  6. Chiu, T.-C., Chang, L.-C., Chiang, C.-K., Chang, H.-T.: Determining estrogens using surface-assisted laser desorption/ionization mass spectrometry with silver nanoparticles as the matrix. J. Am. Soc. Mass Spectrom. 19(9), 1343–1346 (2008)

    Article  CAS  Google Scholar 

  7. Chiang, C.-K., Chiang, N.-C., Lin, Z.-H., Lan, G.-Y., Lin, Y.-W., Chang, H.-T.: Nanomaterial-based surface-assisted laser desorption/ionization mass spectrometry of peptides and proteins. J. Am. Soc. Mass Spectrom. 21(7), 1204–1207 (2010)

    Article  CAS  Google Scholar 

  8. Chen, W.-Y., Chen, Y.-C.: Affinity-based mass spectrometry using magnetic iron oxide particles as the matrix and concentrating probes for SALDI MS analysis of peptides and proteins. Anal. Bioanal. Chem. 386(3), 699–704 (2006)

    Article  CAS  Google Scholar 

  9. Shrivas, K., Kailasa, S.K., Wu, H.-F.: Quantum dots laser desorption/ionization MS: multifunctional CdSe quantum dots as the matrix, concentrating probes and acceleration for microwave enzymatic digestion for peptide analysis and high resolution detection of proteins in a linear MALDI‐TOF MS. Proteomics 9(10), 2656–2667 (2009)

    Article  CAS  Google Scholar 

  10. Castellana, E.T., Russell, D.H.: Tailoring nanoparticle surface chemistry to enhance laser desorption ionization of peptides and proteins. Nano Lett. 7(10), 3023–3025 (2007)

    Article  CAS  Google Scholar 

  11. Kawasaki, H., Sugitani, T., Watanabe, T., Yonezawa, T., Moriwaki, H., Arakawa, R.: Layer-by-layer self-assembled mutilayer films of gold nanoparticles for surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 80(19), 7524–7533 (2008)

    Article  CAS  Google Scholar 

  12. Chiang, C.-K., Yang, Z., Lin, Y.-W., Chen, W.-T., Lin, H.-J., Chang, H.-T.: Detection of proteins and protein-ligand complexes using HgTe nanostructure matrixes in surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 82(11), 4543–4550 (2010)

    Article  CAS  Google Scholar 

  13. DeLouise, L.A., Miller, B.L.: Enzyme immobilization in porous silicon: quantitative analysis of the kinetic parameters for glutathione-S-transferases. Anal. Chem. 77(7), 1950–1956 (2005)

    Article  CAS  Google Scholar 

  14. Jochems, P., Satyawali, Y., Diels, L., Dejonghe, W.: Enzyme immobilization on/in polymeric membranes: status, challenges and perspectives in biocatalytic membrane reactors (BMRs). Green Chem. 13(7), 1609–1623 (2011)

    Article  CAS  Google Scholar 

  15. Dulay, M.T., Baca, Q.J., Zare, R.N.: Enhanced proteolytic activity of covalently bound enzymes in photopolymerized sol gel. Anal. Chem. 77(14), 4604–4610 (2005)

    Article  CAS  Google Scholar 

  16. Safdar, M., Sproß, J., Jänis, J.: Microscale enzyme reactors comprising gold nanoparticles with immobilized trypsin for efficient protein digestion. J. Mass Spectrom. 48(12), 1281–1284 (2013)

    Article  CAS  Google Scholar 

  17. Wang, Z.-G., Wan, L.-S., Liu, Z.-M., Huang, X.-J., Xu, Z.-K.: Enzyme immobilization on electrospun polymer nanofibers: an overview. J. Mol. Catal. B 56(4), 189–195 (2009)

    Article  CAS  Google Scholar 

  18. Kawaguchi, H., Fujimoto, K., Mizuhara, Y.: Hydrogel microspheres III. Temperature-dependent adsorption of proteins on poly-N-isopropylacrylamide hydrogel microspheres. Colloid Polym. Sci. 270(1), 53–57 (1992)

    Article  CAS  Google Scholar 

  19. Grabstain, V., Bianco-Peled, H.: Mechanisms controlling the temperature‐dependent binding of proteins to poly (N‐isopropylacrylamide) microgels. Biotechnol. Prog. 19(6), 1728–1733 (2003)

    Article  CAS  Google Scholar 

  20. Huang, X., Yin, Y., Tang, Y., Bai, X., Zhang, Z., Xu, J., Liu, J., Shen, J.: Smart microgel catalyst with modulatory glutathione peroxidase activity. Soft Matter 5(9), 1905–1911 (2009)

    Article  CAS  Google Scholar 

  21. Welsch, N., Becker, A.L., Dzubiella, J., Ballauff, M.: Core–shell microgels as “smart” carriers for enzymes. Soft Matter 8(5), 1428–1436 (2012)

    Article  CAS  Google Scholar 

  22. Xu, J., Zeng, F., Wu, S., Liu, X., Hou, C., Tong, Z.: Gold nanoparticles bound on microgel particles and their application as an enzyme support. Nanotechnology 18(26), 265704 (2007)

    Article  Google Scholar 

  23. Pich, A., Richtering, W.: Microgels by precipitation polymerization: synthesis, characterization, and functionalization. Adv. Polym. Sci. 234, 1–37 (2011)

    Article  Google Scholar 

  24. Chen, L.-Y., Ou, C.-M., Chen, W.-Y., Huang, C.-C., Chang, H.-T.: Synthesis of photoluminescent Au ND-PNIPAM hybrid microgel for the detection of Hg2+. ACS Appl. Mater. Interfaces 5(10), 4383–4388 (2013)

    CAS  Google Scholar 

  25. Brown, K.R., Natan, M.J.: Hydroxylamine seeding of colloidal Au nanoparticles in solution and on surfaces. Langmuir 14(4), 726–728 (1998)

    Article  CAS  Google Scholar 

  26. Kruger, N.J.: The Bradford method for protein quantitation. In: Walker, J.M. (ed.) The protein protocols handbook, p. 17. Humana Press, Totowa (2009)

    Chapter  Google Scholar 

  27. Huo, D., Li, Y., Qian, Q., Kobayashi, T.: Temperature-pH sensitivity of bovine serum albumin protein-microgels based on cross-linked poly (N-isopropylacrylamide-co-acrylic acid). Colloids Surf. B 50(1), 36–42 (2006)

    Article  CAS  Google Scholar 

  28. Alvarez, M.M., Khoury, J.T., Schaaff, T.G., Shafigullin, M.N., Vezmar, I., Whetten, R.L.: Optical absorption spectra of nanocrystal gold molecules. J. Phys. Chem. B 101(19), 3706–3712 (1997)

    Article  CAS  Google Scholar 

  29. Gawlitza, K., Turner, S.T., Polzer, F., Wellert, S., Karg, M., Mulvaney, P., Klitzing, R.V.: Interaction of gold nanoparticles with thermoresponsive microgels: influence of the cross-linker density on optical properties. Phys. Chem. Chem. Phys. 15(37), 15623–15631 (2013)

    Article  CAS  Google Scholar 

  30. Loretta, L., Gonzalez, E., Abbasi, A.Z., Parak, W.J., Puntes, V.: Synthesis and evaluation of gold nanoparticle-modified polyelectrolyte capsules under microwave irradiation for remotely controlled release for cargo. J. Mater. Chem. 21(31), 11468–11471 (2011)

    Article  Google Scholar 

  31. Wang, N., Li, L.: Microwave digestion of protein samples for proteomics applications. In: Pawliszyn, J. (ed.) Comprehensive sampling and sample preparation, p. 277. Academic Press, Oxford (2012)

    Chapter  Google Scholar 

  32. Huang, Y.-F., Huang, C.-C., Chang, H.-T.: Exploring the activity and specificity of gold nanoparticle-bound trypsin by capillary electrophoresis with laser-induced fluorescence detection. Langmuir 19(18), 7498–7502 (2003)

    Article  CAS  Google Scholar 

  33. Wu, C.-S., Wu, C.-T., Yang, Y.-S., Ko, F.-H.: An enzymatic kinetics investigation into the significantly enhanced activity of functionalized gold nanoparticles. Chem. Commun. 17(42), 5327–5329 (2008)

    Article  Google Scholar 

  34. Huang, X.-J., Yu, A.-G., Xu, Z.-K.: Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application. Bioresour. Technol. 99(13), 5459–5465 (2008)

    Article  CAS  Google Scholar 

  35. Johansson, C., Hansson, P., Malmsten, M.: Interaction between lysozyme and poly(acrylic acid) microgels. J. Colloid Interface Sci. 316(2), 350–359 (2007)

    Article  CAS  Google Scholar 

  36. Johansson, C., Hansson, P.: Distribution of cytochrome c in polyacrylate microgels. Soft Matter 6(16), 3970–3978 (2010)

    Article  CAS  Google Scholar 

  37. Waterhouse, N.J., Goldstein, J.C., Ahsen, O.V., Schuler, M., Newmeyer, D.D., Green, D.R.: Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J. Cell Biol. 153(2), 319–328 (2001)

    Article  CAS  Google Scholar 

  38. Karpinich, N.O., Tafani, M., Rothman, R.J., Russo, M.A., Farber, J.L.: The course of etoposide-induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. J. Biol. Chem. 277(19), 16547–16552 (2002)

    Article  CAS  Google Scholar 

  39. Ow, Y.-L.P., Green, D.R., Hao, Z., Mak, T.W.: Cytochrome c: functions beyond respiration. Nat. Rev. Mol. Cell Biol. 9(7), 532–542 (2008)

    Article  CAS  Google Scholar 

  40. Kang, M.H., Reynolds, C.P.: Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin. Cancer Res. 15(4), 1126–1132 (2009)

    Article  CAS  Google Scholar 

  41. Hsu, P.-C., Chen, P.-C., Ou, C.-M., Chang, H.-Y., Chang, H.-T.: Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. J. Mater. Chem. B 1(13), 1774–1781 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Science Council of Taiwan under contract NSC 101-2113M-002-002-MY3. The authors appreciate the assistance of Ya-Yu Yang from the Instrument Center of National Taiwan University (NTU) for TEM measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan-Tsung Chang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 262 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LY., Wu, WC. & Chang, HT. Functional Microgels Assisted Tryptic Digestion and Quantification of Cytochrome c Through Internal Standard Mass Spectrometry. J. Am. Soc. Mass Spectrom. 25, 1944–1952 (2014). https://doi.org/10.1007/s13361-014-0983-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13361-014-0983-z

Key words

Navigation