Skip to main content
Log in

Mapping of seedling resistance in barley to Puccinia striiformis f. sp. pseudohordei

  • Plant Genetics • Original Paper
  • Published:
Journal of Applied Genetics Aims and scope Submit manuscript

Abstract

The barley grass stripe rust (BGYR) pathogen Puccinia striiformis f. sp. pseudohordei was first detected in Australia in 1997. While studies have established that it is virulent on wild barley grass, and can infect several barley cultivars, the basis of genetic resistance to this pathogen in barley is largely unknown. Understanding the genetic basis of host resistance and ensuring the selection of germplasm with multiple resistance genes are important to mitigate the potential impact of BGYR in barley production. Genetic analysis of seedling resistance to BGYR in two barley doubled haploid populations, Amaji Nijo/WI2585 (AN/WI) and Galleon/Haruna Nijo (GL/HN), indicated that resistance is governed by several genes. Marker regression analysis of the seedling resistance data from the AN/WI population detected a major QTL, BGYR_WI1 (resistance contributed by WI2585 with the closest marker explaining 52 % of the total phenotypic effect) on chromosome 1HS, flanked by the loci Xabg59 and Xabc310b at map positions 0.0 and 6.9 cM, respectively. Similarly, a major QTL, BGYR_HN1, (resistance contributed by Haruna Nijo with the closest marker explaining 70 % of the total phenotypic effect) was detected in the GL/HN population and was mapped to 1HS, flanked by the loci Xbcd135 and XHOR1 at map positions 12.8 and 24.5 cM, respectively. In addition, several minor loci that provided resistance against BGYR were detected in both populations. While defined QTL intervals were large, the analysis nonetheless provides new information on sources of major QTL controlling resistance to BGYR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Badr A, Muller K, Schafer-Pregl R, El Rabey H, Effgen S, Ibrahim HH, Pozzi C, Rohde W, Salamini F (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17:499–510

    Article  PubMed  CAS  Google Scholar 

  • Borovkova IG, Jin Y, Steffenson BJ (1998) Chromosomal location and genetic relationship of leaf rust resistance genes Rph9 and Rph12 in barley. Phytopathology 88:76–80

    Article  PubMed  CAS  Google Scholar 

  • Cakir M, Spackman M, Wellings CR, Galwey NW, Moody DB, Poulsen D, Ogbonnaya FC, Vivar H (2003) Molecular mapping as a tool for pre-emptive breeding for resistance to the exotic barley pathogen, Puccinia striiformis f. sp hordei. Aust J Agric Res 54:1351–1357

    Article  CAS  Google Scholar 

  • Cakir M, Gupta S, Li C, Hayden M, Mather D, Ablett G, Platz G, Broughton S, Chalmers K, Loughman R, Jones MK, Lance RCM (2011) Genetic mapping and QTL analysis of disease resistance traits in the barley population Baudin x AC Metcalfe. Crop Past Sci 62:152–161

    Article  Google Scholar 

  • Castro AJ, Capettini F, Corey AE, Filichkina T, Hayes PM, Kleinhofs A, Kudrna D, Richardson K, Sandoval-Islas S, Rossi C, Vivar H (2003a) Mapping and pyramiding of qualitative and quantitative resistance to stripe rust in barley. Theor Appl Genet 107:922–930

    Article  PubMed  CAS  Google Scholar 

  • Castro AJ, Chen XM, Hayes PM, Johnston M (2003b) Pyramiding quantitative trait locus (QTL) alleles determining resistance to barley stripe rust: effects on resistance at the seedling stage. Crop Sci 43:651–659

    Article  CAS  Google Scholar 

  • Chen FQ, Prehn D, Hayes PM, Mulrooney D, Corey A, Vivar H (1994) Mapping genes for resistance to barley stripe rust (Puccinia striiformis f. sp. hordei). Theor Appl Genet 88:215–219

    PubMed  CAS  Google Scholar 

  • Chen WQ, Wu LR, Liu TG, Xu SC, Jin SL, Peng YL, Wang BT (2009) Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis 93:1093–1101

    Article  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S, Wu YH, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao SAM, Varshney RK, Szucs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582–594

    Article  PubMed  PubMed Central  Google Scholar 

  • Derevnina L, Zhou M, Singh D, Wellings CR, Park RF (2015) The genetic basis of resistance to barley grass yellow rust (Puccinia striiformis f. sp. pseudo-hordei) in Australian barley cultivars. Theor Appl Genet 128:187–197

    Article  PubMed  CAS  Google Scholar 

  • Golegaonkar PG, Karaoglu H, Park RF (2009) Molecular mapping of leaf rust resistance gene Rph14 in Hordeum vulgare. Theor Appl Genet 119:1281–1288

    Article  PubMed  CAS  Google Scholar 

  • Golegaonkar PG, Wellings CR, Singh D, Park RF (2013) Genetic and molecular analyses of resistance to a variant of Puccinia striiformis in barley. J Appl Genet 54:1–9

    Article  PubMed  CAS  Google Scholar 

  • Hearnden PR, Eckermann PJ, McMichael GL, Hayden MJ, Eglinton JK, Chalmers KJ (2007) A genetic map of 1,000 SSR and DArT markers in a wide barley cross. Theor Appl Genet 115:383–391

    Article  PubMed  CAS  Google Scholar 

  • International Grain Council (2013) http://www.igc.int/en/grainsupdate/sd.aspx?crop=Barley (accessed on 30th Apr 2014)

  • Jafary H, Szabo LJ, Niks RE (2006) Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities. Mol Plant-Microbe Interact 19:1270–1279

    Article  PubMed  CAS  Google Scholar 

  • Keiper FJ, Hayden MJ, Park RF, Wellings CR (2003) Molecular genetic variability of Australian isolates of five cereal rust pathogens. Mycol Res 107:545–556

    Article  PubMed  CAS  Google Scholar 

  • Korff MV, Wang H, Leon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111:583–590

    Article  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  PubMed Central  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • Marcel TC, Varshney RK, Barbieri M, Jafary H, de Kock MJD, Graner A, Niks RE (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487–500

    Article  PubMed  CAS  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts. An atlas of resistance genes. CSIRO, Mebourne, Australia p 9

  • Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Niks RE (2014) How specific is non-hypersensitive host and nonhost resistance of barley to rust and mildew fungi? J Integr Agric 13:244–254

    Article  Google Scholar 

  • Pallotta MA, Asayama S, Reinheimer JM, Davies PA, Barr AR, Jefferies SP, Chalmers KJ, Lewis J, Collins HM, Roumeliotis S, Logue SJ, Coventry SJ, Lance RCM, Karakousis A, Lim P, Verbyla AP, Eckermann PJ (2003) Mapping and QTL analysis of the barley population Amagi Nijo x WI2585. Aust J Agric Res 54:1141–1144

    Article  CAS  Google Scholar 

  • Park RF (2008) Breeding cereals for rust resistance in Australia. Plant Pathol 57:591–602

    Article  Google Scholar 

  • Park RF, Poulsen D, Barr AR, Cakir M, Moody DB, Raman H, Read BJ (2003) Mapping genes for resistance to Puccinia hordei in barley. Aust J Agric Res 54:1323–1333

    Article  CAS  Google Scholar 

  • Spackman ME, Ogbonnaya FC, Brown JS (2010) Hypervariable RAPD, ISSR and SSR markers generate robust taxonomic groups among Puccinia striiformis formae speciales of importance to Australian agriculture. Australas Plant Pathol 39:226–233

    Article  CAS  Google Scholar 

  • Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiologic races of Puccinia graminis var. tritici. US Dep Agric. ARS E617:1–53

  • Sui XX, He ZH, Lu YM, Wang ZL, Xia XC (2010) Molecular mapping of a non-host resistance gene YrpstY1 in barley (Hordeum vulgare L.) for resistance to wheat stripe rust. Hereditas 147:176–182

    Article  PubMed  Google Scholar 

  • Thomas WTB, Powell W, Waugh R, Chalmers KJ, Barua UM, Jack P, Lea V, Forster BP, Swanston JS, Ellis RP, Hanson PR, Lance RCM (1995) Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.). Theor Appl Genet 91:1037–1047

    PubMed  CAS  Google Scholar 

  • Toojinda T, Broers LH, Chen XM, Hayes PM, Kleinhofs A, Korte J, Kudrna D, Leung H, Line RF, Powell W, Ramsay L, Vivar H, Waugh R (2000) Mapping quantitative and qualitative disease resistance genes in a doubled haploid population of barley (Hordeum vulgare). Theor Appl Genet 101:580–589

    Article  CAS  Google Scholar 

  • Vales MI, Schön CC, Capettini F, Chen XM, Corey AE, Mather DE, Mundt CC, Richardson KL, Sandoval-Islas JS, Utz HF, Hayes PM (2005) Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust. Theor Appl Genet 111:1260–1270

    Article  PubMed  CAS  Google Scholar 

  • Varshney RK, Tuberosa R (2007) Genomics-assisted crop improvement: genomics approaches and platforms, vol 1. Springer, Dordrecht

  • Von Wettstein-Knowles P (1992) Cloned and mapped genes: current status. In: Shewry PR (ed) Barley: genetics, biochemistry, molecular biology, and biotechnology. CAB. Int, Wallingford, pp 73–98

  • Wellings CR (2007) Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Aust J Agric Res 58:567–575

    Article  Google Scholar 

  • Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141

    Article  Google Scholar 

  • Wellings CR, Burdon JJ, McIntosh RA, Wallwork H, Raman H, Murray GM (2000a) A new variant of Puccinia striiformis causing stripe rust on barley and wild Hordeum species in Australia. Plant Pathol 49:803

    Article  Google Scholar 

  • Wellings CR, Read B, Moody D (2000b) Stripe rust affecting barley in Australia-current and potential threats. In: Proceedings 8th International Barley Genetics Symposium, Adelaide, Australia, October 2000, vol III, pp 197–199

  • Wenzl P, Li HB, Carling J, Zhou MX, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang JP, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics 7:206–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Willsmore KL, Eckermann P, Varshney RK, Graner A, Langridge P, Pallotta M, Cheong J, Williams KJ (2006) New eSSR and gSSR markers added to Australian barley maps. Aust J Agric Res 57:953–959

    Article  CAS  Google Scholar 

  • Zhou MX, Li HB (2008) Identification of molecular markers associated with powdery mildew and barley grass stripe rust resistance. In: Proceedings of the 10th International Barley Genetics Symposium, Alexandria, Egypt, April 2008, pp 381–384

  • Zohary D (1999) Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the Near East. Genet Resour Crop Evol 46:133–142

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge Bill and Melinda Gates Foundation, and the Australian Grains Research and Development Corporation for the provision of a Postgraduate Scholarship to the first author. Thanks to Mr Matthew Williams for his excellent technical support during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Singh.

Additional information

Communicated by: Andrzej Górny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamino, L.N., Singh, D., Pallotta, M.A. et al. Mapping of seedling resistance in barley to Puccinia striiformis f. sp. pseudohordei . J Appl Genetics 57, 37–44 (2016). https://doi.org/10.1007/s13353-015-0304-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13353-015-0304-7

Keywords

Navigation