Skip to main content
Log in

The genetic basis of resistance to barley grass yellow rust (Puccinia striiformis f. sp. pseudo-hordei) in Australian barley cultivars

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Resistance to Puccinia striiformis in 18 barleys was conferred by one or more genes. In two genotypes, resistance mapped to chromosomes 5HL and 7HL (seedling), and 5HS (adult plant).

Abstract

Twenty barley genotypes were assessed for resistance to a variant of P. striiformis [barley grass yellow rust (BGYR)] that is adapted to wild Hordeum sp. (barley grass) and is known to be virulent on several Australian barley cultivars. With the exception of Biosaline-19, all of the genotypes tested were resistant to BGYR. Genetic analyses of 16 Australian and three exotic barley lines indicated that each carried at least a single gene for resistance. Seedling resistance genes identified in the doubled haploid population developed from a cross between Franklin and Yerong were mapped to the long arm of chromosomes 5H and 7H, respectively. These genes were given the temporary designations of Rpsp-hFranklin and Rpsp-hYerong. Three QTL were detected in the same population when tested at the adult plant stage, two of them being in a similar position to Rpsp-hFranklin and Rpsp-hYerong and the third one was mapped to 5HS. Allelism tests between genotypes that exhibited seedling infection type responses to BGYR that were similar to Franklin and Yerong revealed that resistance in most were genetically independent of Rpsp-hFranklin and Rpsp-hYerong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alsop BP, Farre A, Wenzl P, Wang JM, Zhou MX, Romagosa I, Kilian A, Steffenson BJ (2011) Development of wild barley-derived DArT markers and their integration into a barley consensus map. Mol Breed 27:77–92

    Article  Google Scholar 

  • Brown WM, Hill JP, Velasco VR (2003) Barley yellow rust in North America. Phytopathology 39:367–384

    Article  Google Scholar 

  • Chen X, Line RF (1999) Recessive genes for resistance to Puccinia striiformis f. sp. hordei in barley. Phytopathology 89:226–232

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Line RF (2003) Identification of genes for resistance to Puccinia striiformis f. sp. hordei in 18 barley genotypes. Euphytica 129:127–146

    Article  CAS  Google Scholar 

  • De Wit P (1992) Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu Rev Phytopathol 30:391–418

    Article  PubMed  Google Scholar 

  • Golegaonkar PG (2007) Genetic and molecular analysis of resistance to rust diseases in barley. Dissertation, University of Sydney, Australia

  • Hanson WD (1959) Minimum family sizes for planning of genetic experiments. Agron J 51:711–715

    Article  Google Scholar 

  • Keiper FJ, Hayden MJ, Park RF, Wellings CR (2003) Molecular genetic variability of Australian isolates of five cereal rust pathogens. Mycol Res 107:545–556

    Article  CAS  PubMed  Google Scholar 

  • Li HB, Vaillancourt R, Mendham NJ, Zhou MX (2008) Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley (Hordeum vulgare L.). BMC Genom 9:401–413

    Article  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. Kluwer Academic Publishers, London

    Book  Google Scholar 

  • Nover I, Scholz F (1969) Genetische Untersuchungen zur Resistenz der Gerste gegen Gelbrost (Puccinia striiformis West.). Theor Appl Genet 39:150–155

    CAS  PubMed  Google Scholar 

  • O’Brien L, Brown JS, Young RM, Pascoe I (1980) Occurrence and distribution of wheat stripe rust in Victoria and susceptibility of commercial wheat cultivars. Australas Plant Pathol 9:14

    Article  Google Scholar 

  • Park RF, McIntosh RA (1994) Adult plant resistances to Puccinia recondita f.sp. tritici in wheat. N Z J Crop Hortic Sci 22:151–158

    Article  Google Scholar 

  • Pretorius ZA, Wilcoxson RD, Long DL, Schafer JF (1984) Detecting wheat leaf rust resistance gene Lr 13 in seedlings. Plant Dis 68:585–586

    Article  Google Scholar 

  • Spackman ME, Ogbonnaya FC, Brown JS (2010) Hypervariable RAPD, ISSR and SSR markers generate robust taxonomic groups among Puccinia striiformis formae speciales of importance to Australian agriculture. Australas Plant Pathol 39:226–233

    Article  CAS  Google Scholar 

  • Stubbs RW (1985) Stripe rust. In: Roelfs AP, Bushnell WR (eds) The cereal rusts. Academic Press, Sydney, pp 61–102

    Google Scholar 

  • Sui X, He Z, Lu Y, Wang Z, Xia X (2010) Molecular mapping of a non-host resistance gene YrpstY1 in barley (Hordeum vulgare L.) for resistance to wheat stripe rust. Hereditas 147:176–182

    Article  PubMed  Google Scholar 

  • Van Ooijen JW, Kyazma BV (2009) MapQTL® 6: Software for the mapping of quantitative trait loci in experimental populations. Wageningen, The Netherlands

    Google Scholar 

  • Wellings CR (2007) Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979-2006. Aust J Agric Res 58:567–575

    Article  Google Scholar 

  • Wellings CR (2010) Global status of stripe rust, BGRI 2010 Technical Workshop. St Petersburg, Russia

    Google Scholar 

  • Wellings CR, McIntosh RA (1990) Puccinia striiformis f. sp. tritici in Australasia: pathogenic changes during the first 10 years. Plant Pathol 39:316–325

    Article  Google Scholar 

  • Wellings CR, Burdon JJ, McIntosh RA, Wallwork H, Raman H, Murray GM (2000a) A new variant of Puccinia striiformis causing stripe rust on barley and wild Hordeum species in Australia. Plant Pathol (Oxford) 49:803

    Article  Google Scholar 

  • Wellings CR, Read BJ, Moody DB (2000b) Stripe rust affecting barley in Australia—current and potential threats. In: Logue S (ed) Proceedings of the 8th International Barley Genetics Symposium. Adelaide Convention Centre, Adelaide, pp 197–199

    Google Scholar 

  • Wenzl P, Li H, Carling J, Zhou MX, Raman H, Edie P, Hearnden C, Maier C, Xia L, Craig V, Ovensna J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and phenotypic traits. BMC Genom 7:206–228

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the Australian Grains and Research Development Corporation through a Postgraduate Research Scholarship (GRS139).

Conflict of interest

The authors declare they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Park.

Additional information

Communicated by Patrick M. Hayes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derevnina, L., Zhou, M., Singh, D. et al. The genetic basis of resistance to barley grass yellow rust (Puccinia striiformis f. sp. pseudo-hordei) in Australian barley cultivars. Theor Appl Genet 128, 187–197 (2015). https://doi.org/10.1007/s00122-014-2323-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2323-x

Keywords

Navigation