Skip to main content
Log in

Interdecadal variations of ENSO around 1999/2000

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

This paper discusses the interdecadal changes of the climate in the tropical Pacific with a focus on the corresponding changes in the characteristics of the El Niño–Southern Oscillation (ENSO). Compared with 1979–1999, the whole tropical Pacific climate system, including both the ocean and atmosphere, shifted to a lower variability regime after 1999/2000. Meanwhile, the frequency of ENSO became less regular and was closer to a white noise process. The lead time of the equatorial Pacific's subsurface ocean heat content in preceding ENSO decreased remarkably, in addition to a reduction in the maximum correlation between them. The weakening of the correlation and the shortening of the lead time pose more challenges for ENSO prediction, and is the likely reason behind the decrease in skill with respect to ENSO prediction after 2000. Coincident with the changes in tropical Pacific climate variability, the mean states of the atmospheric and oceanic components also experienced physically coherent changes. The warm anomaly of SST in the western Pacific and cold anomaly in the eastern Pacific resulted in an increased zonal SST gradient, linked to an enhancement in surface wind stress and strengthening of the Walker circulation, as well as an increase in the slope of the thermocline. These changes were consistent with an increase (a decrease) in precipitation and an enhancement (a suppression) of the deep convection in the western (eastern) equatorial Pacific. Possible connections between the mean state and ENSO variability and frequency changes in the tropical Pacific are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, S.-I., and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J. Climate, 13, 2044–2055, doi: 10.1175/1520-0442(2000)013<2044:ICOTSO>2.0.CO;2.

    Article  Google Scholar 

  • Barnston, A. G., M. K. Tippett, M. L. L’Heureux, et al., 2012: Skill of real-time seasonal ENSO model predictions during 2002–2011: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631–651, doi: 10.1175/BAMS-D-11-00111.1.

    Article  Google Scholar 

  • Behringer, D. W., and Y. Xue, 2004: Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Preprints, Eighth Symposium on Integrated Observing and assimilation systems for atmosphere, oceans, and land surface, Seattle, WA, 11–15, [Available at http://ams.confex.com/ams/84Annual/techprogram/paper_70720.htm].

    Google Scholar 

  • Bunge, L., and A. J. Clarke, 2014: On the warm water volume and its changing relationship with ENSO. J. Phys. Oceanogr., 44, 1372–1385, doi: 10.1175/JPO-D-13-062.1.

    Article  Google Scholar 

  • Cai, W. J., S. Borlace, M. Lengaigne, et al., 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Climate Change, 4, 111–116, doi: 10.1038/nclimate2100.

    Article  Google Scholar 

  • Clarke, A. J., and S. Van Gorder, 2001: ENSO prediction using an ENSO trigger and a proxy for western equatorial Pacific warm pool movement. Geophys. Res. Lett., 28, 579–582, doi: 10.1029/2000GL012201.

    Article  Google Scholar 

  • Collins, M., S.-I. An, W. J. Cai, et al., 2011: The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci., 3, 391–397, doi: 10.1038/ngeo868.

    Article  Google Scholar 

  • England, M. H., S. McGregor, P. Spence, et al., 2014: Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Climate Change, 4, 222–227, doi: 10.1038/nclimate2106.

    Article  Google Scholar 

  • Graham, R. J., W.-T. Yun, J. Kim, et al., 2011: Long-range forecasting and the Global Framework for Climate Services. Climate Res., 47, 47–55, doi: 10.3354/cr00963.

    Article  Google Scholar 

  • Horii, T., I. Ueki, and K. Hanawa, 2012: Breakdown of ENSO predictors in the 2000s. decadal changes of recharge/discharge-SST phase relation and atmospheric intraseasonal forcing. Geophys. Res. Lett., 39, L10707, doi: 10.1029/2012GL 051740.

    Article  Google Scholar 

  • Hu, Z.-Z., and T. Nitta, 1996: Wavelet analysis of summer rainfall over North China and India and SOI using 1891–1992 data. J. Meteor. Soc. Japan, 74, 833–844.

    Google Scholar 

  • Hu, Z.-Z., M. Latif, E. Roeckner, et al., 2000: Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations. Geophys. Res. Lett., 27, 2681–2684, doi: 10.1029/2000GL011550.

    Article  Google Scholar 

  • Hu, Z.-Z., A. Kumar, B. Jha, et al., 2012a: An analysis of warm pool and cold tongue El Niños: Air–sea coupling processes, global influences, and recent trends. Climate Dyn., 38, 2017–2035, doi: 10.1007/s00382-011-1224-9.

    Article  Google Scholar 

  • Hu, Z.-Z., A. Kumar, B. Jha, et al., 2012b: An analysis of forced and internal variability in a warmer climate in CCSM3. J. Climate, 25, 2356–2373, doi: 10.1175/JCLI-D-11-00323.1.

    Article  Google Scholar 

  • Hu, Z.-Z., A. Kumar, H.-L. Ren, et al., 2013: Weakened interannual variability in the tropical Pacific Ocean since 2000. J. Climate, 26, 2601–2613, doi: 10.1175/JCLI-D-12-00265.1.

    Article  Google Scholar 

  • Hu, Z.-Z., A. Kumar, and B. H. Huang, 2016a: Spatial distribution and the interdecadal change of leading modes of heat budget of the mixed-layer in the tropical Pacific and the association with ENSO. Climate Dyn., 46, 1753–1768, doi: 10.1007/s00382-015-2672-4.

    Article  Google Scholar 

  • Hu, Z.-Z., B. H. Huang, Y.-H. Tseng, et al., 2016b: Does vertical temperature gradient of the atmosphere matter for El Niño development? Climate Dyn., (published online), doi: 10.1007/s 00382-016-3149-9.

    Google Scholar 

  • Huang, B. Y., V. F. Banzon, E. Freeman, et al., 2015: Extended reconstructed sea surface temperature version 4 (ERSST v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911–930, doi: 10.1175/JCLI-D-14-00006.1.

    Google Scholar 

  • Janowiak, J. E., and P. P. Xie, 1999: CAMS-OPI: A global satellite–rain gauge merged product for real-time precipitation monitoring applications. J. Climate, 12, 3335–3342, doi: 10.1175/1520-0442(1999)012<3335:COAGSR>2.0.CO;2.

    Article  Google Scholar 

  • Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54, 811–829, doi: 10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.

    Article  Google Scholar 

  • Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830–847, doi: 10.1175/1520-0469(1997)054<0830:AEORPF> 2.0.CO;2.

    Article  Google Scholar 

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, et al., 2002: NCEPDOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643, doi: 10.1175/BAMS-83-11-1631.

    Article  Google Scholar 

  • Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern Pacific and central Pacific types of ENSO. J. Climate, 22, 615–632, doi: 10.1175/2008JCLI2309.1.

    Article  Google Scholar 

  • Kirtman, B., and A. Pirani, 2009: The state of the art of seasonal prediction: Outcomes and recommendations from the first world climate research program workshop on seasonal prediction. Bull. Amer. Meteor. Soc., 90, 455–458, doi: 10.1175/2008BAMS2707.1.

    Article  Google Scholar 

  • Kug, J.-S., S.-I. An, F.-F. Jin, et al., 2005: Preconditions for El Niño and La Niña onsets and their relation to the Indian Ocean. Geophys. Res. Lett., 32, L05706, doi: 10.1029/2004GL 021674.

    Article  Google Scholar 

  • Kumar, A., and Z.-Z. Hu, 2014: Interannual and interdecadal variability of ocean temperature along the equatorial Pacific in conjunction with ENSO. Climate Dyn., 42, 1243–1258, doi: 10.1007/s00382-013-1721-0.

    Article  Google Scholar 

  • Kumar, A., M. Y. Chen, Y. Xue, et al., 2015: An analysis of the temporal evolution of ENSO prediction skill in the context of the equatorial Pacific Ocean observing system. Mon. Wea. Rev., 143, 3204–3213, doi: 10.1175/MWR-D-15-0035.1.

    Article  Google Scholar 

  • L’Heureux, M. L., S. Lee, and B. Lyon, 2013a: Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Climate Change, 3, 571–576, doi: 10.1038/nclimate1840.

    Google Scholar 

  • L’Heureux, M. L., D. C. Collins, and Z.-Z. Hu, 2013b: Linear trends in sea surface temperature of the tropical Pacific Ocean and implications for the El Niño–Southern Oscillation. Climate Dyn., 40, 1223–1236, doi: 10.1007/s00382-012-1331-2.

    Article  Google Scholar 

  • Li, X. C., S.-P. Xie, S. T. Gille, et al., 2016: Atlantic-induced pantropical climate change over the past three decades. Nat. Climate Change, 6, 275–279, doi: 10.1038/nclimate2840.

    Article  Google Scholar 

  • Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.

    Google Scholar 

  • Lübbecke, J. F., and M. J. McPhaden, 2014: Assessing the twentyfirst-century shift in ENSO variability in terms of the Bjerknes stability index. J. Climate, 27, 2577–2587, doi: 10.1175/JCLI-D-13-00438.1.

    Article  Google Scholar 

  • Luo, J.-J., W. Sasaki, and Y. Masumoto, 2012: Indian Ocean warming modulates Pacific climate change. Proc. Nat. Acad. Sci. USA, 109, 18701–18706, doi: 10.1073/pnas.1210239109.

    Article  Google Scholar 

  • McPhaden, M. J., 2012: A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys. Res. Lett., 39, L09706, doi: 10.1029/2012GL051826.

    Article  Google Scholar 

  • McPhaden, M. J., 2015: Playing hide and seek with El Niño. Nat. Climate Change, 5, 791–795, doi: 10.1038/nclimate2775.

    Article  Google Scholar 

  • McPhaden, M. J., T. Lee, and D. McClurg, 2011: El Niño and its relationship to changing background conditions in the tropical Pacific ocean. Geophys. Res. Lett., 38, L15709, doi: 10.1029/2011GL048275.

    Article  Google Scholar 

  • Meehl, G. A., and W. M. Washington, 1996: El Niño-like climate change in a model with increased atmospheric CO2 concentrations. Nature, 382, 56–60, doi: 10.1038/382056a0.

    Article  Google Scholar 

  • Meinen, C. S., and M. J. McPhaden, 2000: Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J. Climate, 13, 3551–3559, doi: 10.1175/1520-0442(2000)013<3551:OOWWVC>2.0.CO;2.

    Article  Google Scholar 

  • Meyers, S. D., B. G. Kelly, and J. J. O'Brien, 1993: An introduction to wavelet analysis in oceanography and meteorology: With application to the dispersion of Yanai waves. Mon. Wea. Rev., 121, 2858–2866, doi: 10.1175/1520-0493(1993)121<2858:AITWAI>2.0.CO;2.

    Article  Google Scholar 

  • National Research Council, 2010: Assessment of Intraseasonal to Interannual Climate Prediction and Predictability. National Academies Press, Washington, D.C., USA, 192 pp.

    Google Scholar 

  • Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, doi: 10.1029/2010GL046031.

    Article  Google Scholar 

  • Ren, H.-L., and F.-F. Jin, 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26, 6506–6523, doi: 10.1175/ JCLI-D-12-00601.1.

    Article  Google Scholar 

  • Ren, H.-L., F.-F. Jin, M. F. Stuecker, et al., 2013: ENSO regime change since the late 1970s as manifested by two types of ENSO. J. Meteor. Soc. Japan, 91, 835–842, doi: 10.2151/jmsj. 2013-608.

    Article  Google Scholar 

  • Su, J. Z., B. Q. Xiang, B. Wang, et al., 2014: Abrupt termination of the 2012 Pacific warming and its implication on ENSO prediction. Geophys. Res. Lett., 41, 9058–9064, doi: 10.1002/2014GL062380.

    Article  Google Scholar 

  • Timmermann, A., J. Oberhuber, A. Bacher, et al., 1999: Increased El Niño frequency in a climate model forced by future greenhouse warming. Nature, 398, 694–696, doi: 10.1038/19505.

    Article  Google Scholar 

  • Tseng, Y.-H., Z.-Z. Hu, R. Q. Ding, et al., 2016: An ENSO prediction approach based on ocean conditions and ocean–atmosphere coupling. Climate Dyn., (published online), doi: 10.1007/s00382-016-3188-2.

    Google Scholar 

  • Wang, S. W., J. H. Zhu, J. N. Cai, et al., 2003: Irregularities in ENSO variability. Acta Scientiarum Naturalium Universitatis Pekinensis, 39, 125–133, doi: 10.3321/j.issn:0479-8023.2003.z1.016. (in Chinese)

    Google Scholar 

  • Wang, W. Q., M. Y. Chen, and A. Kumar, 2010: An assessment of the CFS real-time seasonal forecasts. Wea. Forecasting, 25, 950–969, doi: 10.1175/2010WAF2222345.1.

    Article  Google Scholar 

  • Wittenberg, A. T., 2009: Are historical records sufficient to constrain ENSO simulations? Geophys. Res. Lett., 36, L12702, doi: 10.1029/2009GL038710.

    Article  Google Scholar 

  • Xiang, B. O., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327–340, doi: 10.1007/s00382-012-1427-8.

    Article  Google Scholar 

  • Yeh, S. W., J. S. Kug, B. Dewitte, et al., 2009: El Niño in a changing climate. Nature, 461, 511–514, doi: 10.1038/nature 08316.

    Article  Google Scholar 

  • Zhu, J., G. Zhou, R.-H. Zhang, et al., 2011: On the role of oceanic entrainment temperature (Te) in decadal changes of El Niño/Southern Oscillation. Ann. Geophys., 29, 529–540, doi: 10.5194/angeo-29-529-2011.

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the constructive comments and suggestions from the two reviewers. The scientific results and conclusions, as well as any view or opinions expressed herein, are those of the authors and do not necessarily reflect the views of NWS, NOAA, or the Department of Commerce.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-Zhen Hu.

Additional information

Supported by the China Meteorological Administration Special Public Welfare Research Fund (GYHY201506013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, ZZ., Kumar, A., Huang, B. et al. Interdecadal variations of ENSO around 1999/2000. J Meteorol Res 31, 73–81 (2017). https://doi.org/10.1007/s13351-017-6074-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-017-6074-x

Key words

Navigation